ижбэ1 01 что это
Блок управления ЭПХХ (5013.3761)
Блок управления экономайзером принудительного холостого хода (ЭПХХ) 5013.3761 предназначен для включения/отключения электромагнитного клапана ЭПХХ с целью повышения экономии топлива и снижения токсичности выхлопных газов автомобиля.
Применяемость: автомобили ВАЗ-2104, ВАЗ-2105, ВАЗ-2107, ВАЗ-2121 и др. с карбюратором “Солекс”.
Блок управления ЭПХХ 5013.3761 обеспечивает:
— управление электромагнитным клапаном экономайзера принудительного холостого хода;
— защиту цепи управления клапаном экономайзера от короткого замыкания на “массу” автомобиля;
— защиту от понижения сопротивления цепи клапана ЭПХХ.
Блок управления ЭПХХ выпускается в климатическом исполнении О2.1 по ГОСТ 15150 для внутреннего рынка и на экспорт. Режим работы блока по ГОСТ 3940 — продолжительный, номинальный S1.
Блок 5013.3761 устанавливается на предусмотренное для него место в автомобиле при помощи штатных крепежных деталей и штатного разъема.
Проверка исправности электромагнитного клапана
Проверка проводится непосредственно на автомобиле. Для этого нужно при работающем двигателе снять со штекера клапана любой из проводов. Двигатель должен немедленно остановиться. Продолжающаяся работа двигателя при исправных системах карбюратора и пневмоклапане ЭПХХ указывает на неисправность электромагнитного клапана.
Для проверки исправности блока управления ЭПХХ следует подключить вольтметр к проводу, соединяющему электромагнитный клапан с блоком управления, и к «массе». На холостом ходу и при повышенной частоте вращения коленвала двигателя напряжение на штекере электромагнитного клапана должно быть выше 12 В. Затем, увеличив частоту вращения коленвала двигателя до 2000-3000 мин-1, следует резко закрыть дроссельную заслонку. В момент закрытия дроссельной заслонки и до снижения частоты вращения до 1100 мин-1 напряжение на штекере электромагнитного клапана должно отсутствовать. Если напряжение при отпускании дроссельной заслонки остаётся неизменным, следует отсоединить любой провод от микровыключателя системы ЭПХХ карбюратора. Если при частоте вращения коленвала двигателя более 1600-1800 мин-1 фиксируется падение напряжения до 0,5 В и ниже, то в микровыключателе короткое замыкание или нарушена его установка. Если напряжение не падает – неисправен блок управления. Косвенно эта неисправность подтверждается работой двигателя от самовоспламенения после выключения зажигания.
Блок управления эпхх
Блок управления ЭПХХ 50.3761
Для управления клапаном ЭПХХ в карбюраторных двигателях автомобилей ВАЗ 2108 — 2110 используется блок управления ЭПХХ 50.3761. В качестве датчика положения дроссельной заслонки используется датчик-винт, представляющий из себя пластмассовый винт с металлическим наконечником, вкручивающийся в кронштейн, закреплённый на карбюраторе.
При открытии дроссельной заслонке наконечник винта, с прикреплённым к нему проводом, не упирается в рычаг дроссельной заслони. Это приводит к разрыву цепи вывода 5 блока управления с массой. При этом закрывается транзистор VT7, а транзистор VT5 открывается, открывая в свою очередь транзистор VT8. Транзистор VT8 подаёт питание на электромагнитный клапан независимо от числа оборотов коленвала.
На вывод 3 блока управления подходит провод, соединяющий его с выводом первичной катушки зажигания, передающий импульсы, которые поступают на вывод 4 микросхемы А1. На выводе 3 микросхемы формируются импульсы постоянной длительности, повторение которых соответствует импульсам от трамблёра. Транзисторы VT1 и VT2 разряжают времязадающий конденсатор С1. Если частота вращения коленвала меньше 1100 об./мин., то напряжение на конденсаторе не поднимается, при повышении числа оборотов напряжение возрастает и когда оно превысит 8 В, происходит открытие транзисторов VT3 и VT4 которые через микросхему А2 открывают транзистор VT6 и соответственно VT8.
Блока управления ЭПХХ 25.3761
Схема блока управления ЭПХХ 25.3761 отличается в основном только работой при оборотах коленчатого вала более 1100 об./мин. Это обусловлено применением в качестве датчика положения дроссельной заслонки микропереключателя, подающего питание на электропневматический клапан при открытой заслонке. Работа блока управления на холостом ходу идентична блоку 50.3761.
Блок ЭПХХ 1402.3733.
Блок ЭПХХ 1402.3733 устанавливается на автомобили семейства ГАЗ и УАЗ. Принцип его работы такая же как и блока 50,3761. Отличие блоков только в схеме.
Неисправность блока управления ЭПХХ.
При неисправности блока ЭПХХ двигатель не будет работать на холостом ходу или при отпущенной педали газа, обороты скачут от 900 до 1200. Для поиска неисправности достаточно просто удалить сердечник на клапане или соединить трубки на карбюраторе помимо «баллончика».
Система ЭПХХ
Внимание. Будьте осторожны:
Эта запись о работе, вернее о не правильной работе ЭПХХ карбюратора Озон.
Бывает так, что при отпускании педали газа, или после торможения двигателем двигатель трясти, либо вообще глохнет. Это происходит из-за неправильной работы ЭПХХ. Многие попросту отключают эту систему, считая что она не очень то и нужна.
Но это совсем не так: При работающей системе машина лучше тормозит двигателем, что особенно важно сейчас- зимой. Также уменьшается расход бензина. Система ЭПХХ отключает подачу топлива не только в режиме торможения двигателем, но и в режиме больших нагрузок (хоть клапан и открыт, но разряжения в впускном коллекторе не хватает, чтобы открыть подачу топлива(стрелка эконометра в красной зоне), что позволяет избежать излишнего переобогащения смеси — для этой цели служит эконостат)
Системой ЭПХХ управляет блок 25.3761
Информации по микросхеме в интернете крайне мало, нашел всего два листа:
Данная микросхема представляет собой частотный компаратор. Т.е. при превышении заданной частоты она отключает клапан ЭПХХ, а при понижении — включает.
Причина того что двигатель глохнет- ЭПХХ отключает подачу топлива, но когда топливо начинает снова поступать, обороты двигателя уже слишком низкие.
Необходимая частота задается состоянием ножек микросхемы: 9,11,13 — частота включения, 10,12,14 — частота отключения.
Ножки могут быть в 3 состояниях:
L — Low — низкий уровень — масса
H — High — высокий уровень — +12в
F — свободный — ножка остается не подключенной.
Далее по таблице определяется необходимая частота:
На один оборот катушка зажигания делает два импульса, 1 об/мин = 1/60 сек.
F=n/30 Гц (частота =обороты/30)
Допустим:
Для частоты 1230 об/мин:
1230/30=41 Гц необходимые значения FLL на 9,11,13 ножках соответственно.
Для частоты 1329 об/мин:
1329/30=44,3 Гц необходимые значения FFL
Перерезаем одрожки в данных местах:
Значения FFL — частота вращения при которой возобновится подача топлива — 1329 об/мин.
Получились значения FLL — 1230 об/мин
В итоге получилось:
Подача топлива должна возобновляться при 1230 об/мин.
Через некоторое время напишу ощущения от изменений.
Прошу оценить запись в коментариях, либо «мне нравится».
Приборы МД-1 и АЗ-1 для БСЗ (+ бонус: схемы)
Ура! Поздравьте меня, они мои! 🙂
Два замечательных прибора наконец-то найдены в городе Ульяновске!
Для начала поясню, что в городе Ульяновске такие приборы это что-то из разряда магии. В продаже их нигде нет.
Я совершенно случайно обнаружил их на АВИТО. Продавец купил их в далеком 2008 году в замечательном городе Казань! Он специально ездил за ними в этот город :). Сейчас у него Lada Kalina, поэтому приборы остались пылиться на полке. Цена вопроса за оба прибора всего 200 рублей!
Блок мгновенной диагностики (МД-1) представляет собой устройство для мгновенной диагностики основных элементов системы зажигания. После включения зажигания, световая индикация покажет состояние элементов системы зажигания. Светодиод «П» определяет наличие напряжения питания на разъеме коммутатора, что означает исправность замка зажигания и реле зажигания. Светодиод «К» сигнализирует об отсутствии обрыва в цепи первичной обмотки катушки зажигания и на участке от катушки к коммутатору. Мигание светодиода «Д» при запуске стартера свидетельствует об исправности датчика холла.
На этом польза устройства НЕ заканчивается! С его помощью я наконец-то выставил точное зажигание, следуя инструкции, но с некоторыми оговорками. Это будет отдельная запись в БЖ.
Еще с его помощью удобно определять точный поворот РВ при регулировке зазоров клапанов.
Аварийное зажигание (АЗ-1) можно использовать в дождь и при езде по лужам (для прогрева и сушки свечей), для проверки электронного коммутатора (ВАЗ, ЗАЗ, Ока) или при выходе из строя датчика Холла. Рекомендуется двигаться в режиме АВАРИЙНОГО ЗАЖИГАНИЯ со скоростью не более 90 км/ч, в режиме малых нагрузок. Расстояние пробега в этом режиме не ограничено!
За 200 рублей, с текущим курсом, это просто волшебные приборы и большая удача, что они достались мне!
Радиолюбители могут изготовить их самостоятельно. Вот схемы:
Расшифровка цифровой и буквенной маркировки SMD резисторов
Резисторы в безвыводном исполнении (SMD), как и другие компоненты, требуют маркировки. По ней можно получить информацию о номинале резистора и его точности. Но в случае с СМД-компонентами проблемой становятся габариты. Нанести полное буквенно-цифровое обозначение на ограниченном пространстве невозможно. Маркировка в виде цветовых полос также не выход – разместить необходимое количество меток также не хватит места. Проблемой станет и определение первого знакоместа (откуда начинать считывание): утолщенная линия или смещение маркировки к одной из сторон также потребует дополнительного пространства. Поэтому для безвыводных элементов принята особая система обозначений.
Что собой представляет маркировка SMD резисторов
Резисторы для поверхностного монтажа маркируют методом нанесения на верхнюю часть корпуса трех или четырех цифр. Этих символов хватает лишь для обозначения номинального сопротивления и, в определенных случаях, точности.
Для указания мощности места на поверхности элемента нет, поэтому эту характеристику можно определить лишь визуально, по габаритам резистора. Впрочем, в большинстве случаев это относится и к выводным элементам, особенно с цветовой маркировкой.
Трехзначная нумерация резисторов с допуском 2%, 5% и 10%
Если на корпус прибора нанесено три символа, это означает, что резистор имеет точность от 2% до 10 %. Существует два варианта трехзначной маркировки электронных компонентов – полностью цифровое и цифробуквенное обозначение.
Три цифры
Две цифры и буква R
Если в маркировке используется литера R, это означает, что его сопротивление меньше 10 Ом, и значение не равно целому количеству Ом. Буквенный символ обозначает положение десятичной запятой. Общий вид маркировки может быть 3R3=3,3 Ом или 0R5=0,5 Ом.
Четырехзначная нумерация резисторов
Для значений меньше 1 Ом
Если номинал однопроцентного резистора 1 Ом или менее, то трех символов также недостаточно для маркировки его сопротивления. Поэтому применяется четырехзначное обозначение. Ноль не обозначается для экономии места, на первом месте символ десятичной запятой, после него идут три цифры, обозначающие сопротивление. Если на корпусе имеется маркировка R100, это означает, что это однопроцентный резистор с номиналом 0,1 Ом.
Маркировка SMD резисторов по EIA-96
Четырехзначное обозначение параметров резисторов не является оптимальным методом. Все же для четырех символов места на малогабаритных корпусах недостаточно. Поэтому приборов с точностью 1% для форм-факторов ниже 0805 применяется другая система маркировки, состоящая из двух цифр и буквенного символа. Такое обозначение вводится стандартом EIA-96, согласно которому две цифры означают номинал в омах, а буква – множитель.
Таблица кодов и значений маркировки резисторов
В стандарте EIA-96 нет прямого соответствия между цифрами маркировки и номиналом. Фактическому значению сопротивления сопоставлен код. Чтобы определить значение сопротивления, надо обратиться к таблице:
Таблица 1. Таблица кодов и значений маркировки резисторов по EIA-96.
Так, коду 20 соответствует значение 158 Ом, а коду 69 – 511. Очевидно, что запомнить соответствие кода и номинала очень сложно. Поэтому рекомендуется пользоваться таблицей или онлайн-калькулятором.
Таблица множителей
Таблица множителей меньше, но также неочевидна и сложна для запоминания:
Таблица 2. Таблица значений буквенных множителей в маркировке резисторов по EIA-96.
Код | Множитель |
---|---|
Z | 0.001 |
Y or R | 0.01 |
X or S | 0.1 |
A | 1 |
B or H | 10 |
C | 100 |
D | 1000 |
E | 10000 |
F | 100000 |
Это означает, что полный номинал резистора, имеющего маркировку 22А, равен 165×1=165 Ом, а 44B – 280×10=2800 Ом = 2,8 кОм.
Примеры расшифровки цифробуквенной маркировки SMD резисторов
Для определения параметра резисторов не обязательно запоминать таблицы значений. В Интернете размещено много онлайн-калькуляторов, также доступно к скачиванию множество оффлайн-программ. Но если понять принципы маркировки, возможно определять значения сопротивления и точности, не прибегая к справочникам, после небольшой тренировки это получается с первого взгляда. Для закрепления понимания основ надо разобрать несколько практических примеров.
Резисторы 101, 102, 103, 104
Во всех этих примерах численное значение сопротивления одинаково, и равно 10, но множители в каждом случае отличаются:
Легко запомнить, что для трехсимвольной кодировки последняя цифра 3 обозначает килоомы, а 6 — мегаомы – это дополнительно облегчит визуальное считывание маркировки.
Резисторы 1001, 1002, 2001
Если на корпус электронного компонента нанесено 4 цифры, это означает, что его точность не ниже 1%. А номинал также состоит из мантиссы и множителя, который задается последним символом:
Принципиально считывание этой маркировки не отличается от трехсимвольной.
Резисторы r100, r020, r00, 2r2
Если на резисторе нанесено обозначение с буквой R, её можно сразу мысленно заменить на десятичную запятую:
Если значение сопротивления 2%, 5% или 10% элемента меньше 1 Ом, перед буквой R наносят ноль (например, 0R5 будет означать 0,5 Ом).
Резисторы 01b, 01c
Для определения номинала надо обратиться к таблицам мантисс и множителей:
Из приведенных примеров видно, что один и тот же номинал резистора в зависимости от его исполнения может быть маркирован по-разному. Так, сопротивление 1 кОм может иметь кодировку:
Данная система обозначений применяется на 90+ процентах безвыводных приборов, выпускаемых во всем мире. Но гарантии, что какой-либо изготовитель не применяет свою систему маркировки, нет. Поэтому, в случае сомнений, самый надежный способ – измерить реальное значение сопротивления мультиметром. После небольшой тренировки это не составит сложности. Тот же способ является единственным для SMD-элементов наименьших размеров – на них маркировка не наносится вообще.
Определение номинального значения сопротивления резистора по маркировке цветовыми полосами: онлайн калькулятор
Как расшифровать маркировку конденсатора и узнать его ёмкость?
Маркировка проводов и кабелей и расшифровка марки
Что такое резистор и для чего он нужен?
Что такое варистор, основные технические параметры, для чего используется
Что означает степень защиты IP — расшифровка, таблица, примеры использования