запутанные фотоны что это
Квантовая запутанность простыми словами. Чудеса продолжаются
Если вас еще не поразили чудеса квантовой физики, то после этой статьи ваше мышление уж точно перевернется. Сегодня я расскажу, что такое квантовая запутанность, но простыми словами, чтобы любой человек понял, что это такое.
Запутанность как магическая связь
После того, как были открыты необычные эффекты, происходящие в микромире, ученые пришли к интересному теоретическому предположению. Оно именно следовало из основ квантовой теории.
В прошлой статье я рассказывал о том, что электрон ведет себя очень странно.
Но запутанность квантовых, элементарных частиц вообще противоречит какому-либо здравому смыслу, выходит за рамки любого понимания.
Если они взаимодействовали друг с другом, то после разъединения между ними остается магическая связь, даже если их разнести на любое, сколь угодно большое расстояние.
Магическая в том смысле, что информация между ними передается мгновенно.
Как известно из квантовой механики частица до измерения находится в суперпозиции, то есть имеет сразу несколько параметров, размыта в пространстве, не имеет точное значение спина. Если над одной из пары ранее взаимодействующих частиц произвести измерение, то есть произвести коллапс волновой функции, то вторая сразу, мгновенно отреагирует на это измерение. И не важно, какое расстояние между ними. Фантастика, не правда ли.
Как известно из теории относительности Эйнштейна ничто не может превышать скорость света. Чтобы информация дошла от одной частицы до второй, нужно по крайне мере затратить время прохождения света. Но одна частица именно мгновенно реагирует на измерение второй. Информация при скорости света дошла бы до нее уже позже. Все это не укладывается в здравый смысл.
Если разделить пару элементарных частичек с нулевым общим параметром спина, то одна должна иметь отрицательный спин, а вторая положительный. Но до измерения значение спина находится в суперпозиции. Как только мы измерили спин у первой частички, увидели, что он имеет положительное значение, так сразу вторая приобретает отрицательный спин. Если же наоборот первая частичка приобретает отрицательное значение спина, то вторая мгновенно положительное значение.
Или такая аналогия.
У нас имеется два шара. Один черный, другой белый. Мы их накрыли непрозрачными стаканами, не видим, где какой. Мешаем как в игре наперстки.
Если открыли один стакан и увидели, что там белый шар, значит во втором стакане черный. Но сначала мы не знаем, где какой.
Так и с элементарными частичками. Но они до того, как на них посмотреть, находятся в суперпозиции. До измерения шары как бы бесцветны. Но разрушив суперпозицию одного шара и увидев, что он белый, то второй сразу становится черным. И это происходит мгновенно, будь хоть один шар на земле, а второй в другой галактике. Чтобы свет дошел от одного шара до другого в нашем случае, допустим нужно сотни лет, а второй шар узнает, что произвели измерение над вторым, повторяю, мгновенно. Между ними запутанность.
Понятно, что Эйнштейн, да и многие другие физики не принимали такой исход событий, то есть квантовую запутанность. Он считал выводы квантовой физики неверными, неполными, предполагал, что не хватает каких-то скрытых переменных.
Вышеописанный парадокс Эйнштейна наоборот придумал, чтобы показать, что выводы квантовой механики не верны, потому что запутанность противоречит здравому смыслу.
Этот парадокс назвали парадокс Эйнштейна — Подольского — Розена, сокращённо ЭПР-парадокс.
Но проведенные эксперименты с запутанностью уже позже А. Аспектом и другими учеными, показали, что Эйнштейн был не прав. Квантовая запутанность существует.
И это уже были не теоретические предположения, вытекающие из уравнений, а реальные факты множества экспериментов по квантовой запутанности. Ученые это увидели вживую, а Эйнштейн умер, так и не узнав правду.
Частицы действительно взаимодействуют мгновенно, ограничения по скорости света им не помеха. Мир оказался куда интереснее и сложнее.
При квантовой запутанности происходит, повторю, мгновенная передача информации, образуется магическая связь.
Но как такое может быть?
Сегодняшняя квантовая физика отвечает на этот вопрос изящным образом. Между частицами происходит мгновенная связь не из-за того, что информация передается очень быстро, а потому что на более глубоком уровне они просто не разделены, а все еще находятся вместе. Они находятся в так называемой квантовой запутанности.
То есть состояние запутанности это такое состояние системы, где по каким-то параметрам или значениям, она не может быть разделена на отдельные, полностью самостоятельные части.
Например, электроны после взаимодействия могут быть разделены на большое расстояние в пространстве, но их спины находятся все еще вместе. Поэтому во время экспериментов спины мгновенно согласуются между собой.
Понимаете, к чему это ведет?
Сегодняшние познания современной квантовой физики на основе теории декогеренции сводятся к одному.
Существует более глубокая, непроявленная реальность. А то, что мы наблюдаем как привычный классический мир лишь малая часть, частный случай более фундаментальной квантовой реальности.
В ней нет пространства, времени, каких-то параметров частиц, а лишь информация о них, потенциальная возможность их проявления.
Именно этот факт изящно и просто объясняет, почему возникает коллапс волновой функции, рассмотренный в предыдущей статье, квантовую запутанность и другие чудеса микромира.
Сегодня, говоря о квантовой запутанности, вспоминают потусторонний мир.
То есть на более фундаментальном уровне элементарная частица непроявленная. Она находится одновременно в нескольких точках пространства, имеет несколько значений спинов.
Затем по каким-то параметрам она может проявиться в нашем классическом мире в ходе измерения. В рассмотренном выше эксперименте две частицы уже имеют конкретное значение координат пространства, но спины их находятся все еще в квантовой реальности, непроявленные. Там нет пространства и времени, поэтому спины частиц сцеплены вместе, несмотря на огромное расстояние между ними.
А когда мы смотрим, какой спин у частицы, то есть производим измерение, мы как бы вытаскиваем спин из квантовой реальности в наш обычный мир. А нам кажется, что частицы обмениваются информацией мгновенно. Просто они были все еще вместе по одному параметру, хоть и находились далеко друг от друга. Их раздельность на самом деле есть иллюзия.
Все это кажется странным, непривычным, но этот факт уже подтверждается многими экспериментами. На основе магической запутанности создаются квантовые компьютеры.
Реальность оказалась намного сложнее и интереснее.
Принцип квантовой запутанности не стыкуется с обычным нашим взглядом на мир.
Вот как объясняет квантовую запутанность физик-ученый Д.Бом.
Допустим, мы наблюдаем за рыбой в аквариуме. Но в силу каких-то ограничений, мы можем смотреть не на аквариум, как он есть, а лишь на его проекции, снимаемые двумя камерами спереди и сбоку. То есть мы наблюдаем за рыбой, смотря на два телевизора. Нам кажутся рыбы разными, так как мы снимаем ее одной камерой в анфас, другой в профиль. Но чудесным образом их движения четко согласуются. Как только рыба с первого экрана поворачивается, вторая мгновенно делает также поворот. Мы удивляемся, не догадываясь, что это одна и та же рыба.
Так и в квантовом эксперименте с двумя частицами. Из-за своих ограничений нам кажется, что спины двух, ранее взаимодействующих частиц, не зависимы друг от друга, ведь теперь частицы находятся далеко друг от друга. Но на самом деле они все еще вместе, но находятся в квантовой реальности, в нелокальном источнике. Мы просто смотрим не на реальность, как она есть на самом деле, а с искажением, в рамках классической физики.
Квантовая телепортация простыми словами
Когда ученые узнали о квантовой запутанности и мгновенной передаче информации, многие задались вопросом: можно ли осуществить телепортацию?
Это оказалось действительно возможным.
Уже проведено множество экспериментов по телепортации.
Суть метода легко можно понять, если вы поняли общий принцип запутанности.
Имеется частица, например электрон А и две пары запутанных электронов В и С. Электрон А и пара В, С находятся в разных точках пространства, неважно как далеко. А теперь переведем в квантовую запутанность частички А и В, то есть объединим их. Теперь С становится точно такой же как А, потому что общее их состояние не меняется. То есть частица А как бы телепортируется в частицу С.
Сегодня проведены уже более сложные опыты по телепортации.
Конечно, все опыты пока проводятся только с элементарными частицами. Но согласитесь, это уже невероятно. Ведь все мы состоим из тех же частиц, ученые говорят, что телепортация макрообъектов теоретически ничем не отличается. Нужно лишь решить множество технических моментов, а это лишь вопрос времени. Может быть, человечество дойдет в своем развитии до способности телепортировать большие объекты, да и самого человека.
Квантовая реальность
Квантовая запутанность есть целостность, неразрывность, единение на более глубоком уровне.
Если по каким-то параметрам частицы находятся в квантовой запутанности, то по этим параметрам их просто нельзя разделить на отдельные части. Они взаимозависимы. Такие свойства просто фантастические с точки зрения привычного мира, запредельные, можно сказать потусторонние и трансцендентные. Но это факт, от которого уже никуда не деться. Пора это уже признать.
Но к чему все это ведет?
Оказывается, о таком положении вещей давно говорили многие духовные учения человечества.
Видимый нами мир, состоящий из материальных объектов это не основа реальности, а лишь малая ее часть и не самая главная. Существует трансцендентная реальность, которая задает, определяет все, что происходит с нашим миром, а значит и с нами.
Именно там кроются настоящие ответы на извечные вопросы о смысле жизни, настоящего развития человека, обретения счастья и здоровья.
И это не пустые слова.
Все это приводит к переосмыслению жизненных ценностей, пониманию того, что кроме бессмысленной гонкой за материальными благами есть что-то более важное и высокое. И эта реальность не где-то там, она окружает нас повсюду, она пронизывает нас, она как говорится «на кончиках наших пальцев».
Но давайте об этом поговорим в следующих статьях.
А сейчас посмотрите видео о квантовой запутанности.
От квантовой запутанности мы плавно переходим к теории декогеренции. Об этом в следующей статье.
Запутанная квантовая физика
Феномен квантовой запутанности (entanglement), когда разделенные в пространстве частицы мистическим образом взаимодействуют друг с другом, нахально нарушая запрет на передачу взаимодействий со сверхсветовой скоростью, давно считается частью науки и у научного сообщества не вызывает никаких сомнений. Вполне серьезно изучаются перспективы создания на этой основе квантовых компьютеров. Считается, что их элементы данных — кубиты будут изменять и передавать свое информационное состояние посредством механизма квантовой запутанности. Такая прагматичная организация, как DARPA щедро финансирует эту чудесную науку. А между тем имеет серьезные основания точка зрения, согласно которой квантовая запутанность в смысле парадокса ЭПР — это миф, который прижился в поверхностном слое понимания квантовой механики.
Парадокс ЭПР
Эйнштейн предпринял атаку на квантовую механику со знаменем в руках, на котором было написано «Бог не играет в кости». В знаменитой статье [0], опубликованной в 1935-м, появился т.н. парадокс ЭПР (Эйнштейна, Подольского, Розена). Из этого парадокса, который на самом деле является софизмом, родился миф о квантовой запутанности.
Основная идея ЭПР, согласно статье его авторов, выглядит следующим образом. Пусть имеется пара квантовых объектов 1 и 2, образующих единую систему с волновой функцией , где наборы переменных
и
используются для описания поведения подсистем 1 и 2 в отдельности. Если задан полный набор
собственных волновых функций для некоторых наблюдаемых системы 1, то функция
разлагается в ряд Фурье:
Теперь предположим, что подсистемы удаляются друг от друга и через некоторое время расстояние между ними стало настолько большим, что взаимное влияние невозможно. Если затем измерить значения (коммутирующих) наблюдаемых системы 1, то, в силу принципов квантовой механики, она скачком перейдет в некоторое собственное состояние . В контексте запутанной парадигмы это событие имеет драматическое название «коллапс волновой функции». Следовательно, рассуждают далее авторы ЭПР, вся система в целом скачком переходит в состояние c волновой функцией
. Это означает, что подсистема 2 внезапно оказалась в состоянии
, хотя никакого воздействия подсистемы 1 и измерительных приборов на нее не было.
Перед нами главный эффект, с которым связано представление о нелокальности квантовой механики, а именно — непонятное и необъяснимое, мгновенное взаимодействие удаленных квантовых объектов 1 и 2. Оно заключается в том, что при измерении некоторых физических величин, связанных с системой 1, автоматически и сразу меняется состояние системы 2.
В приведенных рассуждениях есть сразу две ошибки. Первая заключается в том, что волновая функция , вообще говоря, не отвечает собственному состоянию объединенной системы. Поэтому последняя не обязана переходить в
скачком при измерении, связанном только с системой 1. И все же возникает вопрос: в каком состоянии окажется подсистема 2 после измерения 1? Ответ прост и очевиден — ее состояние не изменится. В самом деле, поскольку в рассматриваемой ситуации объекты 1 и 2 независимы, то
где — волновая функция системы
, рассматриваемой в отдельности. Следовательно, как только подсистема 1 оказалась в собственном состоянии
, подсистема 2 автоматически оказывается в… своем исходном состоянии
. Что и следовало ожидать!
Вторая ошибка заключается в том, что пара не взаимодействующих объектов 1 и 2, формально объединенных в единую систему, на самом деле не испытывает возмущения при измерении, которое связано лишь с подсистемой 1. Такое «возмущение» не способно вызвать скачок объединенной системы в одно из собственных состояний (полного набора коммутирующих наблюдаемых, полученного объединением наборов 1 и 2). Для этого нужно было бы возмутить всю систему в целом, т.е., реально подействовать также и на объект 2.
Таким образом, псевдопарадокс ЭПР лишь вынуждает нас уточнить понятие возмущения. Но вместо этого ему придают абсолютный и формальный смысл, как если бы взмах крыла бабочки считался возмущением Вселенной,… хотя с философской точки зрения так оно и есть. Выше дан точный ответ на вопрос, что именно происходит с подсистемой 2 после измерения 1. По существу ничего!
Из своего псевдопарадокса авторы ЭПР сделали далеко идущие выводы о неполноте квантовой механики, т.е. о том, что эта теория нуждается в дополнительных параметрах для описания квантовых систем. Параметрах, которые исключают всякую неопределенность и делают их поведение детерминированным в классическом духе. С точки зрения Эйнштейна наука пока просто не знает этих скрытых параметров и законов их поведения, поэтому ограничивается вероятностным характером квантовых прогнозов.
В популярных объяснениях эффекта квантовой запутанности пары частиц, после вольного изложения ЭПР всегда ссылаются на законы сохранения. Рассмотрим случай пары электронов. Рассуждать о сохранении импульса нет смысла, хотя часто приводится пример пары «запутанных» электронов с импульсами . Поскольку оператор импульса имеет непрерывный спектр, его собственные состояния практически не могут быть реализованы. Поэтому на квантовом уровне бессмысленно рассматривать пару электронов с импульсами
. Таким образом, отбросим импульс в сторону и рассмотрим случай «запутанной» пары электронов с нулевой суммарной проекцией спина на ось Z (синглет).
Сохранение проекции спина означает, что для оператора проекции спина на ось Z имеет место
, где
— оператор энергии данной системы. В частности это означает, что если система первоначально находится в собственном состоянии оператора
, то в дальнейшем, при отсутствии внешних возмущений она будет при каждом
находиться в собственном состоянии наблюдаемой
, хотя вектор состояния может изменяться во времени.
Для единственного электрона оператор имеет два собственных вектора, обозначим их
и
, так что
Предположим, что пара электронов первоначально находится в состоянии , где
— любое комплексное число. Здесь вектор
отвечает такому состоянию пары, что первый электрон находится в состоянии
, а второй в состоянии
. Состояние
является собственным для спина
системы из двух электронов, поэтому при измерении система останется в этом состоянии и будет получено нулевое значение
для спина пары.
В процессе разбегания электронов в разные стороны спиновое состояние синглета не изменится, если система остается изолированной вплоть до момента первого измерения. Это означает, что при каждом пара электронов находится в состоянии
, которое является собственным для оператора
и отвечает собственному значению
. Согласно популярным рассуждениям о паре запутанных электронов, при измерении спина одной из частиц произойдет скачок системы в собственное состояние оператора
. Но согласно квантовой механике, поскольку система уже находится в собственном состоянии (полного набора коммутирующих наблюдаемых, включающего
, она останется в нем после измерения. Соответственно, изменится разве лишь числовой множитель перед вектором
.
Таким образом, перехода измеряемого электрона в состояние , а второго в состояние
не произойдет. Получено противоречие с тем фактом, что измеряемый электрон все-таки перейдет в собственное состояние своего оператора
. Отсюда следует, что при измерении спина одного из электронов совместное состояние синглета будет разрушено. При этом состояние второго электрона останется неизменным, т.е., неопределенным с точки зрения спина, а именно
.
В рамках запутанной парадигмы также рассматривают пару фотонов в одинаковых состояниях поляризации, так что общее состояние пары можно задать вектором , где
и
задают состояния поляризации в перпендикулярных направлениях. Если при измерении одного из фотонов он перейдет в собственное состояние
, то якобы это повлечет переход пары в состояние
, т.е., мгновенный скачок второго фотона в такое же состояние поляризации
. Однако, аналогично примеру с синглетом электронов можно утверждать, что пара фотонов останется в собственном состоянии
. Это противоречие означает, что измерение одного из двух фотонов разрушает систему, после чего второй фотон остается в исходном состоянии
. Запутанности в смысле ЭПР и здесь не возникает.
Неравенства Белла
В 1964 Джон Стюарт Белл написал интересную статью [1], в которой подверг критическому анализу гипотезу о скрытых параметрах. Эти, на удивление простые рассуждения Белла оказали большое влияние на развитие квантовой физики с конца XX века по настоящее время.
По ходу своих рассуждений Белл вывел неравенство , где
— это единичные векторы различных направлений в пространстве, на которые проектируются спины двух разбегающихся в разные стороны частиц (электронов). Изначально частицы имеют нулевой суммарный спин, т.е. образуют синглет. При этом
обозначает ненормированный коэффициент корреляции пары случайных величин
и
, являющихся проекциями спиновых переменных
и
частиц 1 и 2 на направления векторов
и
соответственно. Другими словами
— это среднее значение произведения чисел
и
. Которые, заметим, принимают значения
. Данное неравенство имеет место при условии, что верна гипотеза Эйнштейна о скрытых параметрах
квантовой системы. И оно может быть проверено статистически. В дальнейшем были аналогично получены другие неравенства, которые применимы не только к синглетной паре электронов, и все они называются неравенствами Белла. Например такое:
Оно также справедливо лишь в том случае, если есть скрытые параметры квантовой системы, определяющие ее поведение. При этом, поскольку законы поведения этих параметров неизвестны, они считаются случайными величинами.
Для иллюстрации последнего утверждения, рассмотрим опыт с бросанием монеты. Понятно, что полет брошенной монеты определяется многими величинами, которые описывают ее форму, распределение массы, детальные условия броска, форму поверхности падения и другие факторы, от которых зависит ответ на вопрос: «орел или решка». При полном учете всех этих «скрытых параметров», которые Белл обозначает символом , можно было бы дать 100% надежный прогноз того, как именно упадет монета. Однако такой учет слишком сложен, и в этом нет большой необходимости, поэтому довольствуются вероятностным прогнозом того, как упадет монета. Соответственно, скрытые параметры следует считать случайными величинами. Вопрос: существуют ли аналогично скрытые параметры у любой квантовой системы, или же таких параметров нет, а стохастическое поведение субатомных объектов заложено в природе вещей?
В экспериментах с т.н. запутанными частицами, чаще всего фотонами, искомым результатом всегда является нарушение неравенства Белла. Такие нарушения в самом деле наблюдаются с конца 70-х годов прошлого века, и сегодня принято толковать их, как доказательства возникновения запутанных квантовых состояний. При этом значительные усилия экспериментаторов направлены на то, чтобы разнести на возможно большие расстояния приборы, которые регистрируют спины частиц или направления поляризации фотонов, чтобы исключить взаимное влияние объектов и приборов измерения. Сделав тем самым максимально убедительным эффект мгновенной передачи взаимодействий, положенный в основу фантазий о квантовой телепортации.
Однако в действительности, нарушение неравенств Белла означает одно из двух.
a) У квантовых систем нет скрытых параметров. Это полностью соответствует квантовой механике и не связано с запутанностью.
b) Скрытые параметры есть и тогда измерения одной из подсистем могут влиять на другую. Поэтому квантовая запутанность имеет место быть.
Соответственно нет оснований утверждать, что нарушения неравенств Белла экспериментально доказывают феномен ЭПР — запутанности. Разумно предположить, что они влекут за собой a), т.е., что квантовая механика не нуждается в скрытых параметрах и апгрейде в духе Бома. Однако, принято считать эти нарушения свидетельствами ЭПР — запутанности фотонных пар.
Данная парадигма сформировалась под влиянием работ Аспэ и других ученых, поставивших аналогичные эксперименты. Помимо несомненных нарушений неравенств Белла, в них якобы наблюдались корреляции между направлениями поляризации взаимно удаленных фотонов. Будь это так, для опытной проверки ЭПР — запутанности в неравенствах Белла не было бы необходимости. Стоит заметить, что сам Аспэ, судя по статье [1], считал свидетельством запутанности только корреляции. Но в действительности наблюдалась «корреляция» каждого фотона, попавшего в фотоумножитель, с самим собой. Точнее: он достигал двух фотоумножителей почти одновременно (см. ниже).
Опыт Аспэ
Опыт Алана Аспэ (Aspect) — блестящего экспериментатора и классика квантовой магии, внес основной вклад в трансформацию ЭПР — мифа в догму. Результаты опытов Аспэ и других были интерпретированы на основе представления о фотонах, как точечных частицах (с обычными оговорками о корпускулярно-волновом дуализме). Оно является ошибочным, т.к. у фотона нет представления Шредингера [2]. Говоря простым языком, для этих частиц понятие пространственных координат лишено смысла. Поэтому нельзя говорить о том, что в определенный момент времени фотон находится в определенном месте. Он может быть локализован в состоянии малого волнового пакета, но в этом случае поляризация теряет смысл.
В связи с этим уместно процитировать Дирака (P.A.M. Dirac, стр. 25 [2]).
«… Пусть мы имеем пучок света, состоящий из большого числа фотонов, который расщепляется на две компоненты одинаковой интенсивности. Сделав предположение о том, что интенсивность пучка связана с вероятным числом фотонов, мы получили бы, что в каждую из компонент попала бы половина от общего числа фотонов. Если далее эти две компоненты будут интерферировать, то мы должны потребовать, чтобы фотон из одной компоненты мог интерферировать с фотоном в другой компоненте. Иногда эти два фотона уничтожались бы, иногда же они превращались бы в четыре фотона. Это противоречило бы закону сохранения энергии. Новая теория, которая связывает волновую функцию с вероятностями для одного фотона, преодолевает эту трудность, считая, что каждый фотон входит отчасти в каждую из двух компонент. Тогда каждый фотон интерферирует лишь с самим собой. Интерференции между двумя разными фотонами никогда не происходит.»
Аналогичная мысль звучит в цитате из Гейзенберга, которая касается парадокса ЭПР и имеет отношение к интерпретации опытов Аспэ (W. Heisenberg, стр. 34 [3]).
«В связи с этими рассуждениями здесь должно быть указано на мысленный эксперимент, предложенный Эйнштейном. Вообразим один световой квант, который представлен посредством волнового пакета, построенного из максвеллевских волн и которому, таким образом, приписана известная область пространства и, в смысле соотношений неопределенности, также определенная область частот. Посредством отражения от полупрозрачной пластинки мы можем очевидно легко разложить этот волновой пакет на две части: отраженную и прошедшую. Тогда существует определенная вероятность найти световой квант или в одной, или в другой части волнового пакета. Через достаточно долгое время обе части будут сколько угодно далеко удалены друг от друга. Если теперь посредством опыта будет установлено, что световой квант находится, положим, в отраженной части волнового пакета, то это одновременно даст, что вероятность нахождения светового кванта в другой части равна нулю. Опыт на месте отраженной половины пакета производит тем самым некоторое действие (сведение волнового пакета!) на сколь угодно удаленном расстоянии, где находится другая половина, и легко видеть, что это действие распространяется со сверхсветовой скоростью.»
Таким образом, попытки обнаружить ЭПР — запутанные пары фотонов с помощью интерферометра лишены смысла. Допустим, мы разделили световой луч полупрозрачным зеркалом, после чего пропустили один пучок через поляризатор. Согласно парадигме ЭПР, возникают запутанные пары одинаково поляризованных фотонов из двух пучков. Это может быть проверено через интерференцию, но так как интерферировать каждый фотон будет с самим собой, совпадение измеренных в разных местах поляризаций не может быть истолковано, как ЭПР — запутанность.
Неявно предполагаемая возможность поляризации точечного фотона легла в основу ложной интерпретации опытов Аспэ. Начнем с краткого описания этих экспериментов (подробности в статье [1]).
Использовались флуоресцентные источники каскадного излучения, где атомы испускают пары квантов с интервалом нс. В первых опытах один из фотонов пары имел длину волны 551.3 нм (зеленый свет), а другой 422.7 нм (фиолетовый). Исходя из законов сохранения импульса и момента импульса считается, что в каждом каскаде фотоны разлетаются в разные стороны, имея одинаковые направления круговой поляризации — левое или правое с вероятностями 0.5, что равносильно пребыванию в суперпозиции двух состояний линейной поляризации в направлениях осей X и Y. Как полагают Аспэ и его последователи, эта пара квантов света рождается в запутанном, поляризационном состоянии:
Состояния ,
отвечают направлениям поляризации вдоль осей координат, состояния
,
— двум направлениям круговой поляризации фотона номер
.
ЭПР — запутанность означает, что если один из фотонов будет обнаружен поляризованным вдоль оси X (для чего достаточно пропустить его через поляризатор с X — ориентацией), то второй автоматически, в то же мгновение окажется в том же состоянии (что можно обнаружить с помощью второго поляризатора). То же самое в отношении оси Y. В этом случае говорят о корреляции между направлениями поляризации фотонов запутанной пары, которую можно измерить.
На схеме пара лазеров возбуждает флуоресцентный источник каскадного излучения, который, по мысли Аспэ, излучает пары запутанных фотонов. Каждый из них проходит через свой поляризатор (Pol I и Pol II), после чего, пройдя через частотный фильтр, попадает в фотоумножитель (PM I и PM II). Последний, по существу, является детектором одиночных фотонов и работает по принципу электронной лавины, которую инициирует фотоэффект. Схема управления фотоумножителями организована так, что каждая пара квантов детектируется во временном окне около 20 нс. Попадание в него случайной пары фотонов от двух разных атомов маловероятно. Таким образом, схема почти наверняка зафиксирует только пару, излученную в одном каскаде. Происходит это в среднем 100 раз в секунду. Напомним, что каждая такая пара считается ЭПР — запутанной.
Если теперь за некоторый период времени подсчитать числа пар для случаев, когда один из поляризаторов («левый» или «правый») удален, то можно вычислить коэффициент корреляции между событиями поляризованности левого фотона в заданном направлении , а правого в направлении
. Такие измерения позволяют проверить неравенства Белла, а также выявляют корреляцию между поляризациями фотонов каждой пары (для различных направлений
и
). Именно это было сделано группой Аспэ.
Однако, в опыте Аспэ мог иметь место подсчет одиночных фотонов, которые достигали двух фотоумножителей в виде волн со сферическими фронтами (волновыми поверхностями). Согласно квантовой электродинамике [4], поле фотона с заданным моментом импульса распространяется именно в виде такой волны. Можно доказать, что эта волна приходит к каждому из двух поляризаторов в одинаковых фазах, хотя и в разные моменты времени в силу различной удаленности от излучателя. При этом угол между вектором напряженности поля и осью каждого поляризатора один и тот же для любой волновой поверхности. Поэтому волна одного фотона взаимодействует с двумя поляризаторами одинаково. Это и создает иллюзию пары частиц, запутанных в поляризациях.
На сказанное можно возразить, что счетчик фотонов срабатывает дважды в среднем через нс, как и должно быть при излучении каскадов. Однако, время срабатывания фотоумножителя элементарно оценивается
нс. В течение этого времени может быть зафиксирован только один фотон. В действительности он является волновым пакетом, центрированным на сфере
. Если размер пакета
м, что отвечает допплеровскому уширению спектральной линии
, то время прохождения через фотоумножитель имеет порядок интервала между фотонами одного каскада. В условиях опытов Аспэ такое уширение было возможно. Таким образом, до срабатывания пары фотоумножителей на первом фотоне второй не мог быть детектирован, а к моменту, когда оба устройства готовы принять второй фотон, его пакет уже прошел. По-видимому, в большинстве случаев пара фотоумножителей фиксировала только один из двух фотонов каждого каскада.
Заметим также, что в рассматриваемом состоянии направление движения фотона не определено. Это связано с тем, что импульс и его момент не коммутируют. Следовательно, аналогии с классической механикой, которые используются в качестве причины запутанного состояния пары фотонов, в данном случае неуместны. Кроме того, излучение фотона сопровождается возмущением. После него атом окажется не в состоянии с нулевым моментом, а в суперпозиции собственных состояний момента. Таким образом, законы сохранения не влекут состояние пары фотонов одного каскада вида
За время излучения расстояние между фотонами пары составит м. Идея о том, что такая пара рождается запутанной, противоречит здравому смыслу. Впрочем, последнее относится ко всей квантовой магии.
Таким образом, результаты опытов Аспэ имеют интерпретацию, которая не связана с ЭПР — запутанностью. Необходимы более точные оценки, но уже есть основания предполагать, что в этих экспериментах совместные, ЭПР — запутанные состояния не наблюдались. По-видимому, подобным образом можно объяснить все опыты с т.н. запутанными фотонами.
Представления о запутанных состояниях взаимно удаленных частиц, восходящие к парадоксу ЭПР, широко популяризованы и уже считаются частью квантовой механики. Одной из целей данной статьи было показать, что фундамента под этим нет. Мыльный пузырь на иллюстрации символизирует волновой фронт фотона с заданным угловым моментом, а также теорию квантовых компьютеров, основанную на ЭПР — запутанности.
0. Einstein A., Podolsky B., Rosen N., Can Quantum-Mechanical Description of Physical Reality Be Considered Complete,
1. A. Aspect. Bell’s theorem: the naive view of an experimentalist, in Quantum [Un]speakables — From Bell to Quantum information, 2002, R. A. Bertlmann and A. Zeilinger, Springer.
2. П.А.М. Дирак. Принципы квантовой механики, 1960, Москва: Физматгиз (перевод английского издания P.A.M. Dirac. The principles of quantum mechanics, 1958, Oxford: Clarendon press), 1932).
3. В. Гейзенберг. Физические принципы квантовой теории, Москва: ГТТИ (перевод немецкого издания W. Heisenberg: Die Physikalischen Prinzipien der Quantentheorie, 1930, Leipzig).
4. В.Б. Берестецкий, Е.М. Лифшиц, Л.П. Питаевский. Квантовая электродинамика, Москва: Наука, 1989.