ионизированный газ что это

ИОНИЗОВАННЫЙ ГАЗ

— газ, в к-ром атомы (все или значит, часть) потеряли по одному или по несколько принадлежавших им электронов и превратились в положит, ионы. В особых условиях могут образоваться и отрицательные ионы. Подробнее см. Плазма.

Смотреть что такое «ИОНИЗОВАННЫЙ ГАЗ» в других словарях:

ИОНИЗОВАННЫЙ ГАЗ — ИОНИЗОВАННЫЙ ГАЗ, газ, в котором все атомы или молекулы (или значительная их часть) превратились в положительные ионы (см. ИОНЫ) вследствие процессов ионизации … Энциклопедический словарь

Газ — У этого термина существуют и другие значения, см. Газ (значения). Газ NO2 Газ (газообразное состояние) (от нидерл … Википедия

СОЛНЦЕ — звезда, вокруг которой обращаются Земля и другие планеты Солнечной системы. Солнце играет исключительную роль для человечества как первоисточник большинства видов энергии. Жизнь в известной нам форме была бы невозможна, если бы Солнце светило… … Энциклопедия Кольера

ПЛАЗМА — частично или полностью ионизованный газ, в котором плотности положит. и отрицат. зарядов практически одинаковы. При сильном нагревании любое в во испаряется, превращаясь в газ. Если увеличивать темп ру и дальше, резко усилится процесс термич.… … Физическая энциклопедия

плазма — ы; ж. [от греч. plasma вылепленное, оформленное] 1. Биол. Жидкая часть крови. 2. Физ. Ионизированный под воздействием высокой температуры газ с примерно равной концентрацией положительных и отрицательных зарядов. ◁ Плазматический, ая, ое (1 зн.) … Энциклопедический словарь

ДУГОВОЙ РАЗРЯД — самостоятельный квазистационарный электрический разряд в газе, горящий практически при любых давлениях газа, превышающих 10 2 10 4 мм рт. ст., при постоянной или меняющейся с низкой частотой (до 103 Гц) разности потенциалов между электродами. Д.… … Физическая энциклопедия

Магнитогидродинамический генератор — (простейшая схема): 1 источник ионизованного газа; 2 ионизованный газ; 3 канал, по которому подается плазма; 4 электромагнит; 5 электроды; 6 нагрузка. МАГНИТОГИДРОДИНАМИЧЕСКИЙ ГЕНЕРАТОР (МГД генератор), энергетическая установка, в которой… … Иллюстрированный энциклопедический словарь

Статистическая физика — раздел физики, задача которого выразить свойства макроскопических тел, т. е. систем, состоящих из очень большого числа одинаковых частиц (молекул, атомов, электронов и т.д.), через свойства этих частиц и взаимодействие между ними.… … Большая советская энциклопедия

Фазовое состояние — Агрегатное состояние состояние вещества, характеризующееся определёнными качественными свойствами способностью или неспособностью сохранять объём и форму, наличием или отсутствием дальнего и ближнего порядка и другими. Изменение агрегатного… … Википедия

Взрыв — процесс освобождения большого количества энергии в ограниченном объёме за короткий промежуток времени. В результате В. вещество, заполняющее объём, в котором происходит освобождение энергии, превращается в сильно нагретый газ с очень… … Большая советская энциклопедия

Источник

Плазма. Свойства и получение. Применение и отличие. Особенности

Плазма – это ионизированный газ, содержащий электроны, а так же положительно и отрицательно заряженные ионы. Она является одним из четырех основных агрегатных состояний веществ.

Физическое объяснение плазмы и способы ее получения

Традиционно утверждалось, что существует 3 основных агрегатных состояний веществ. Они могут быть жидкими, твердыми и газообразными. Об этом говорили ученые с самого начала существования известной науки. С развитием технологий и научных наблюдений было установлено четвертое состояние веществ, именуемое плазмой. Обычно она возникает в результате сильного нагрева. Процесс ее образования выглядит следующим образом. Любое твердое вещество при очень сильном нагреве сначала плавится, после чего переходит в газообразное состояние, при продолжении температурного воздействия осуществляется его дальнейшее распадение на свободные атомы. От продолжающегося повышения температуры осуществляется отделение электронов, а также положительно и отрицательно заряженных ионов. В результате получается ионизированный газ, являющийся плазмой.

ионизированный газ что это. Смотреть фото ионизированный газ что это. Смотреть картинку ионизированный газ что это. Картинка про ионизированный газ что это. Фото ионизированный газ что это

Впервые о плазме заговорил английский физик сэр Уильям Крикс в 1879 году. Предложенная им концепция активно развивалась и совершенствовалась, что наблюдается и сегодня. Существуют различные предположения, которые указывают на то, что плазма была открыта намного раньше. Об этом можно судить даже по древнему утверждению о существовании четырех стихий: земля, вода, воздух и огонь. Они тесно переплетаются с современным трактованием 4 агрегатных состояний: твердое, жидкое, газообразное и плазменное. В определенных смыслах можно вполне сопоставить плазму и огонь.

Помимо получения плазмы в результате термической обработки вещества, его также можно выделить проводя бомбардировку газа быстрыми заряженными частицами. Для этого проводится облучение радиоактивными веществами. В таких случаях осуществляется выработка низкотемпературной плазмы.

Также была разработана технология получения газоразрядной плазмы. Для этого через газ пропускается электрический ток, вызывающий его ионизацию. Ионизированные частицы переносят ток, что приводит к их дальнейшему разрушению. Получаемая в результате электрического воздействия плазма менее эффективна в плане сохранения жизнедеятельности, чем образованная от термической обработки. Это связано с меньшим нагревом и высокой скоростью охлаждения частиц, так как они постоянно контактируют с другими ионами, не получившими необходимого нагрева.

Более сложный способ ее образования заключается в сильном сжатии вещества. Подобные методы воздействия приводят к сходу атомов со своих орбит. Возникающие в результате отдельные положительно и отрицательно заряженные частицы приобретают определенные свойства, которые могут применяться в различных сферах при обработке материалов.

Свойства плазмы

Главным свойством плазмы является высокая электрическая проводимость, значительно превосходящая прочие агрегатные состояния веществ. При этом суммарный электрический заряд равен нулю. Плазма подвержена влиянию магнитного поля. Под его воздействием она способна концентрировать струю, что позволяет проводить контроль движения газа.

ионизированный газ что это. Смотреть фото ионизированный газ что это. Смотреть картинку ионизированный газ что это. Картинка про ионизированный газ что это. Фото ионизированный газ что это

Также для плазмы характерно корректирование взаимодействия. У обычного газа происходит сталкивание частиц по двое, а в случае с плазмой электроны сталкиваются чаще и крупными группами.

Свойства плазмы могут отличаться в зависимости от ее разновидности. По термическим свойствам ее разделяют на 2 вида:

Для низкотемпературной плазмы характерен нагрев менее чем до 1 млн. Кельвинов. Высокотемпературный газ имеет температуру как минимум 1 млн. Кельвинов. Последняя разновидность плазмы принимает участие в термоядерном синтезе.

Проявление плазмы в природе

Считается, что 99% Вселенной представлено плазмой. Любая звезда состоит именно из ионизированного газа. Впервые об этом начали задумываться наблюдая за Солнцем. Исходящий от него ветер является ничем иным, как плазмой.

ионизированный газ что это. Смотреть фото ионизированный газ что это. Смотреть картинку ионизированный газ что это. Картинка про ионизированный газ что это. Фото ионизированный газ что это

Наблюдать плазму можно и в ионосфере. Визуально этот эффект можно заметить рассмотрев пример полярного сияния. Оно образовывается в результате облучения азота и кислорода солнечным излучением. Конечно, пример с полярным сиянием не столь удачный, поскольку данное явление можно увидеть только в определенных участках местности, малодоступной для большинства людей. Более частым проявлением природной плазмы, которое встречается везде, является момент удара молнии. Электрический искровой разряд, появляющийся в грозу, это и есть сильно ионизирующий газ.

Раньше считалось, что огонь это тоже разновидность плазмы, но это утверждение в корне неверно. Для плазмы характерна температура от 8000 градусов. Самое мощное пламя даже при обдуве кислородом не может нагреваться выше 4000 градусов.

Отличие плазмы от газов

На первый взгляд может показаться, что плазма и газ это довольно взаимосвязанные агрегатные состояния, которые можно объединить в одно понятие. Все же существует ряд особенностей, позволяющие их разделить. В первую очередь можно отметить электрическую проводимость. У газа она крайне мала. Ярким примером будет воздух. Сам по себе он отличный диэлектрик, поэтому по нему электрический заряд не передается. Стоит его довести до состояния плазмы, как ситуация кардинально меняется, ведь по ней заряд передается вполне эффективно.

Также плазму от газов отличает однородность частиц. Для газов характерно, что в их структуре присутствуют подобные друг к другу составляющие. Они постоянно двигаются и взаимодействуют между собой на сравнительно небольшом расстоянии. В случае же с плазмой в ней есть как минимум 2-3, а то и больше вида частиц. В ее составе наблюдаются электроны, ионы и нейтральные частицы. Их свойства отличаются между собой. У них может быть разная скорость или температура. Именно по этой причине для плазмы характерна неустойчивость и сложность управления, поскольку многие ее составляющие действуют отличительно от прочих.

Где применяется плазма

В последнее время появилось довольно много приборов, устройство которых предусматривает работу где применяется плазма. Впервые ионизированные газы начали использоваться при создании светотехники. Ярким тому примером станут газоразрядные лампы. Принцип действия таких лампочек заключается в передаче электрического тока через газ заключенный в колбе. В результате наблюдается ионизация с получением ультрафиолетового излучения. Последнее поглощается люминофором, что и вызывает его свечение в видимом для человеческого глаза диапазоне.

ионизированный газ что это. Смотреть фото ионизированный газ что это. Смотреть картинку ионизированный газ что это. Картинка про ионизированный газ что это. Фото ионизированный газ что это

Особо востребованной технологией является плазменная резка. Таким оборудованием создается разогретая струя, способная плавить металлы и практически все вещества, встречаемые на ее пути. Обычно такое оборудование превращает в ионизированный газ обыкновенную воду. Сначала она испаряется, после чего под воздействием электрического тока из нее формируется плазменный пучок.

ионизированный газ что это. Смотреть фото ионизированный газ что это. Смотреть картинку ионизированный газ что это. Картинка про ионизированный газ что это. Фото ионизированный газ что это

Принцип плазмы может применяться для осуществления передачи данных на расстояние. В связи с этим проводится активная разработка плазменных антенн. Данная идея запатентована еще в 1919 году, но так и не была полноценно применена вплоть до начало XXI века. Технические наработки испытания такого оборудования дают основание полагать, что эта технология придет на замену привычного для всех wi-fi соединения. Она обладает большей скоростью передачи данных, а также возможностью действия в большом радиусе. Проводимость плазмы превышает проводимость серебра, которое является одним из лучших твердых веществ для передачи зарядов.

ионизированный газ что это. Смотреть фото ионизированный газ что это. Смотреть картинку ионизированный газ что это. Картинка про ионизированный газ что это. Фото ионизированный газ что это

Также в промышленности началось внедрение технологии напыления расплавленного материала под воздействием плазменной струи. Металл, или другой материал, расплавляется, после чего подается на струю в плазму. В результате он распыляется, дополняя струю. После этого взаимодействия с плазмой прекращается, и материал оседает на требуемых поверхностях в виде тонкого покрытия. Этот метод позволяет провести обработку гораздо быстрее, чем в случае с электрохимическим методом.

Применение плазмы в научном проекте Токамак

Всемирно известный научный проект Токамак, являющийся сокращением полного названия тороидальная камера с магнитными катушками – это установка для магнитного удержания плазмы. Она разработана с целью поддержания условий для проведения управляемого термоядерного синтеза. Впервые эта установка была построена в 1954 году, после успеха проведенных испытаний, в мире было создано более 200 ее копий, где осуществляются исследования и сегодня.

ионизированный газ что это. Смотреть фото ионизированный газ что это. Смотреть картинку ионизированный газ что это. Картинка про ионизированный газ что это. Фото ионизированный газ что это

Особенность данного проекта заключается в обеспечении контроля ионизированного газа. В Токамаке плазма удерживается с помощью магнитного поля. Такой способ применяется, поскольку создать ограждение стенками для предотвращения утечки плазмы невозможно. Любое вещество при контакте с ней расплавляется. Чтобы магнитное поле могло подействовать ионизирующий газ, через него пропускают электрический ток. Он обеспечивает создание электрического поля. Также прохождение тока активизирует набор высокой температуры.

Исследование плазмы, позволят реализовать идею контролируемого термоядерного синтеза. Как следствие удастся создать высокоэффективные электростанции, работающие значительно безопаснее атомных, и не создающих вредного выброса в атмосферу.

Источник

Особенности процесса ионизации газа при сварочных работах

Технология высоких напряжений и ионизация газа — взаимосвязанные процессы. Если рассматривать процесс с точки зрения природного явления, он происходит при разрядах молнии и ультрафиолетовом излучении, а в искусственном исполнении — при работе электродов (будь то сварка или электродуговой переплав металла) около высоковольтной ЛЭП. Чаще всего с этим явлением сталкиваются при сварных работах как обычной электросваркой, так и аргонодуговой.

Процесс ионизации газов, в зависимости от интенсивности, оказывает влияние на диэлектрические свойства защитной атмосферы и нередко ухудшает качество сварного соединения, поэтому стоит обратить на него особое внимание. Он аналогичен диссоциации электролита, реагирующего с растворителем, в результате чего освобождаются ионы. При ионизации этот же процесс активизируется либо при попадании в электрическое поле, либо при нагревании — это то, чем ионизация газов отличается от диссоциации электролитов.

Оба явления достаточно изучены, чтобы использовать их в бытовых целях, а также минимизировать оказываемое ими негативное влияние. В научной практике для контроля над атомными процессами используется ионизация газа, прибор же, основанный на этом принципе, называется детектором ионизации.

ионизированный газ что это. Смотреть фото ионизированный газ что это. Смотреть картинку ионизированный газ что это. Картинка про ионизированный газ что это. Фото ионизированный газ что это

Особенности процесса ионизированный газ что это. Смотреть фото ионизированный газ что это. Смотреть картинку ионизированный газ что это. Картинка про ионизированный газ что это. Фото ионизированный газ что это

Важно! Если количество свободных электронов и катионов незначительно, а потенциал тока невысок, ионизация молекул газа не возникнет, и газ останется диэлектриком

Разберем подробнее, как происходит ионизация газа. По сути, каждый газ является диэлектриком (при нормальном давлении и температуре), поскольку заряд его молекулы нейтральный. Частицы находятся в постоянном хаотичном движении: ударяются друг о друга, отталкиваются, продолжая столкновение дальше. Чем больше концентрация молекул, тем чаще происходят столкновения (выше давление), но хаотичность от этого не меняется. И только при появлении электрического поля (направленное движение электронов) в перемещении заряженных частиц появляется направление. Каким образом?

Освежим курс химии и вспомним, какие частицы вызывают ионизацию газа. Молекула этого вещества рассматривается как электрический диполь. При попадании под «бомбардировку» электронами отдельные диполи распадаются, образуя положительно заряженные частицы — ионы (катионы, у которых недостает одного электрона) и свободный электрон. Первые движутся к катоду, вторые — к аноду, образуя электрический поток. При повышении напряженности количество «разорванных» молекул (диполей) будет увеличиваться в геометрической прогрессии, пока процесс станет не лавинообразным. И как результат — диэлектрик проводит электрический ток в газах — ионизация газов достигает своей апогейной фазы.

ионизированный газ что это. Смотреть фото ионизированный газ что это. Смотреть картинку ионизированный газ что это. Картинка про ионизированный газ что это. Фото ионизированный газ что это

Виды ионизации в газах ионизированный газ что это. Смотреть фото ионизированный газ что это. Смотреть картинку ионизированный газ что это. Картинка про ионизированный газ что это. Фото ионизированный газ что это

При постоянной подаче газа и тока, первый можно перевести в новое агрегатное состояние — плазму. Момент, когда происходит проход тока через газ, называется разрядом, по определению он может делиться на 4 типа:

Поскольку этот процесс зависит от различных параметров, то он подразделяется на 2 вида ионизации в газах:

Процесс изменения состояния газа инертен, он происходит в течение времени, на него влияют такие параметры, как напряжение, тип газа. Для расчета приращения тока за счет ионизации, а также последующего определения соотношения интенсивности и давления, используется такое понятие как коэффициент ионизации газов. Переход в состояние плазмы возможен, только если степень ионизации газа достигнет нужного предела (т. е. количество заряженных частиц будет превышать число общих).

Ионизация газа возникает под действием сторонних сил и зависит от объема газа и силы тока. Процесс отрыва электрона и его возврат называется ионизация и рекомбинация газов. Поскольку движение +/- ионов противоположно, наряду с разрушением, происходят восстановление диполей и возврат нейтрально заряженных частиц.

ионизированный газ что это. Смотреть фото ионизированный газ что это. Смотреть картинку ионизированный газ что это. Картинка про ионизированный газ что это. Фото ионизированный газ что это

Применение в сварочных работах ионизированный газ что это. Смотреть фото ионизированный газ что это. Смотреть картинку ионизированный газ что это. Картинка про ионизированный газ что это. Фото ионизированный газ что это

Важно! При работе с аргонодуговой сваркой при подключении обратной полярности нельзя сильно нагревать аргон, поскольку осуществляется переход в состояние плазмы

Чтобы исключить появление нежелательной фазы, нужно знать, при каком условии происходит ионизация газа во время сварочных работ. Появляется она независимо от режимов, в которых проводятся работы, но большую опасность представляет для обратной полярности. Здесь мы имеем дело с ионизацией газа пламенем. Разогретый свыше 2400 °С газ начинает превращаться в плазму. Это агрегатное состояние меняет свои характеристики, превращая газ из защитной атмосферы в активную струю, используемую для резки металла. Энергия ионизации газов изменяется при регулировании температуры разогрева газа (как правило, используется аргон).

Заключение

Широкое применение получила ионизация газа: прибор для измерения, основанный на этом принципе, используется в современных телескопах, лазерных установках, приборах для подсчета атомных частиц — все это позволяет проводить сложнейшие опыты, изготавливать медицинское и другое оборудование. Потенциал ионизации газов еще полностью не раскрыт и проходит свою стадию изучения.

Источник

Ионизация газа

Ионизация газа — это процесс образования ионов из нейтральных частиц. Ионизация образуется от соударения в процессе теплового движения или ионизация газа в воздухе.

Что такое ионизация газа Аэроионы

Чистые, сухие газы не содержат свободных зарядов и являются диэлектриками. При различных внешних воздействиях электроны легко отрываются от атомов газа, образуя таким образом положительные ионы. Оторвавшиеся электроны в значительной части остаются в свободном состоянии, в меньшей — присоединяются к другим атомам, образуя отрицательные ионы.

Происходит ионизация газа. В результате ионизации газ делается хотя и плохим, но проводником электрического тока. Ионизация газа происходит при нагревании (см. рис. 2), соударении его частиц, поглощении фотонов ультрафиолетового излучения и т. п.

Соударяясь в процессе теплового движения, электроны и положительные ионы могут вновь соединяться в нейтральные частицы. Это называется рекомбинацией ионов. Если ионизирующий агент действует с постоянной интенсивностью, то в газе устанавливается динамическое равновесие между количеством ионов и электронов, вновь образующихся и рекомбинирующихся в единицу времени.

В результате количество ионов, содержащихся в единице объема газа, или их концентрация, остается постоянным. Если интенсивность ионизирующего агента повышается, увеличивается и концентрация ионов и электронов. Если действие ионизирующего агента прекращается, то газ постепенно возвращается к исходному состоянию.

Ионизация газа в воздухе

В воздухе и других газах, которые находятся в естественных природных условиях, всегда имеется небольшое количество свободных электронов, а также ионов обоих знаков, образовавшихся вследствие ионизирующего действия природных факторов: ультрафиолетовой части солнечного излучения, космического излучения, излучения радиоактивных веществ, находящихся в земной коре, и т. д.

Обычно они присоединяются к нейтральным молекулам или группам молекул и образуют сложные газовые ионы обоих знаков. В воздухе ионы образуются также при распыливании воды (это называется баллоэлектрическим эффектом), например при падении дождя, около водопадов, фонтанов и т. п. Ионы образуются также (путем вторичной ионизации) при атмосферных электрических разрядах (грозовые молнии).

Газовые ионы, в свою очередь, могут присоединяться к различным взвешенным в газе частицам вещества (пылинки частицы дыма) или мельчайшим капелькам водяного пара и т. п.

Находящиеся в атмосфере газовые ионы называются аэроионами и разделяются на легкие и тяжелые. Легкими аэроионами называются газовые ионы, простые или сложные. Масса их невелика, а подвижность относительно высокая. Тяжелыми аэроионами называются газовые ионы, связанные с твердыми частицами или частицами влаги.

Эти ионы имеют значительно большую массу и меньшую подвижность. Концентрация аэроионов в воздухе зависит от различных метеорологических условий и все время меняется. В среднем в 1 см 3 городского воздуха содержится несколько сотен легких и до нескольких десятков тысяч тяжелых аэроионов. В чистом загородном воздухе количество легких аэроионов увеличивается до нескольких тысяч, а тяжелых снижается почти до нуля.

Легкие и преимущественно отрицательные аэроионы являются положительным гигиеническим фактором. Тяжелые аэроионы действуют вредно на организм. В настоящее время в качестве оздоровительного, а иногда и лечебного мероприятия применяется искусственная аэроионизация воздуха с помощью приборов, называемых аэроионизаторами.

Образование тока в газе вторичная ионизация

Ионизация газа, происходящая под влиянием внешних воздействий, называется первичной ионизацией. Если в газе, в котором поддерживается первичная ионизация, образовать электрическое поле, то под действием сил поля ионы и электроны придут в направленное движение. Движение двух встречных потоков положительных и отрицательных ионов и электронов образует электрический ток в газе. Достигая электродов, ионы нейтрализуют свои заряды путем присоединения (на катоде) или отдачи (на аноде) электронов и таким образом поддерживают ток во внешней цепи.

Образование тока в газе при ионизации его путем нагревания можно показать на опыте (рис. 2). Воздух, находящийся между пластинами Р воздушного конденсатора, подключенного к батарее Б, будучи нагрет пламенем спиртовой горелки, делается токопроводящим. Ток между пластинами отмечается чувствительным гальванометром Г.

Если напряжение, приложенное к электродам невелико, невысока и ско рость перемещения ионов, то только часть из числа пар ионов, образующих ся в единицу времени, достигает электродов и, отдавая свои заряды, образует ток в цепи, остальные ионы рекомбинируются. При увеличении напряжения эта часть ионов будет возрастать, соответственно возрастает и сила тока, однако только до тех пор, пока все ионы, образующиеся в единицу времени, не будут достигать электродов. Ток при этом, несмотря на увеличение напряжения, больше возрастать не будет. Этот ток называется током насыщения. Величина Iн тока насыщения прямо пропорциональна заряду е иона, числу N ионов одного знака, образующихся в единицу времени (1 сек) в единице объема (1 см 3 ) газа, и объему V газа между электродами:

Это поясняется схемой, которая показывает, что ионы в газе двигаются двумя встречными потоками, но через любое сечение газа в единицу времени проходит NV зарядов (например, для среднего сечения аb это будет два потока, каждый по NV/2 ионов).

Ионы (или электроны), двигающиеся в газе, испытывают столкновения с окружающими их неионизированными частицами газа, поэтому средняя скорость поступательного движения аэроионов относительно невелика. Эта скорость прямо пропорциональна напряженности поля и зависит от строения иона.

Скорость движения ионов в газе

Подвижность (скорость при напряженности поля 1 в/см) аэроионов указана в таблице.

Вид ионовРадиус иона в смПодвижность в

Масса электрона в тысячи раз меньше массы аэроиона, поэтому скорости движения электронов значительно выше.

При небольших скоростях движения соударение ионов и электронов с неионизированными частицами газа вызывает только изменение направления движения частиц (упругое рассеяние).

Вследствие значительного расстояния между молекулами в газе и при достаточно высокой напряженности поля электроны могут разгоняться до скоростей, при которых их кинетическая энергия может оказаться достаточной, чтобы вызвать неупругое соударение, в результате которого происходит ионизация частицы газа. Это явление называется вторичной ионизацией или ионизацией путем соударения.

Разность потенциалов, при которой должен быть ускорен электрон для осуществления ионизации путем соударения, называется ионизационным потенциалом е — заряд электрона) должна быть равна работе Ли, которую надо совершить, чтобы оторвать электрон от атома данного газа:

где Аи выражена в электрон-вольтах. Итак, ионизационный потенциал численно равен отношению работы по ионизации атома данного газа к заряду электрона.

Наименьший ионизационный потенциал соответствует отрыву внешних электронов.

Ионизационный потенциал внутренних электронов в несколько раз выше. Во многих случаях учитывается некоторый средний потенциал. Например, средний ионизационный потенциал воздуха принимается равным 34 в (это означает, что для образования одной пары ионов в воздухе в среднем необходимо затратить энергию 34 эв).

Во вторичной ионизации принимают участие также и ионы обоих знаков, но в связи с малой подвижностью значение их в этом процессе незначительно.

При определенной величине напряженности поля в газе начинается вторичная ионизация путем соударения. Количество ионов, образующихся в единицу времени, быстро нарастает. Соответственно возрастает и сила тока, что отражается на графике значительным и неравномерным подъемом кривой (участок ВС).

Электрический ток в газе

Электрический ток в газе, особенно значительный по величине, сопровождается свечением газа, звуковыми явлениями (шипением, треском), образованием в воздухе озона и окислов азота и т. п. Совокупность этих явлений, включая и само образование тока, называется электрическим разрядом в газе. Свечение связано с возбуждением атомов и молекул газа, происходящим при соударении их с электронами (или ионами) с высокой кинетической энергией, но недостаточной для ионизации. Звуковые явления связаны с местным нагреванием газа, происходящим при столкновении частиц. В связи с этим частицы газа приходят в движение, которое при определенных условиях является источником звука.

Разряд обусловленный первичной ионизацией, происходящей под действием внешних воздействий, называется несамостоятельным разрядом, так как с прекращением первичной ионизации газа он также прекращается. Разряд, происходящий под действием вторичной ионизации (ионизации путем соударения) называется самостоятельным разрядом в газе, так как он может продолжаться за счет вторично образующихся ионов, т. е. независимо от первичной ионизации.

Похожие страницы:

Понравилась статья поделись ей

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *