Известно что abcd равнобедренная трапеция найдите bc
Дана равнобедренная трапеция, в которой AD = 3BC, CM — высота трапеции.
а) Доказать, что M делит AD в отношении 2 : 1.
б) Найдите расстояние от точки C до середины BD, если AD = 18, AC =
а) Поскольку ABCD равнобедренная трапеция,
тогда откуда
б) В треугольнике AMC угол Треугольники BCO и MOD равны, поскольку угол CBO равен углу ODM, а угол C равен углу M. Тогда откуда O — середина BD, CO — искомое расстояние. Из равенства треугольников BCO и MOD следует равенство отрезков CO и OM, откуда
Приведем решение п. б) Романа Прокопенко.
В треугольнике CMD по теореме Пифагора найдем откуда CD = 10. В треугольнике BCD точка О — середина отрезка BD, поэтому CO медиана. Найдем ее длину по формуле длины медианы:
Критерии оценивания выполнения задания
Баллы
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б)
3
Получен обоснованный ответ в пункте б)
имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки
2
Имеется верное доказательство утверждения пункта а)
при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,
Известно что abcd равнобедренная трапеция найдите bc
В основании прямой призмы АВСDA1В1С1D1 лежит равнобедренная трапеция АВСD c основаниями AD и ВС. Известно, что AD : BC = 2 : 1 и АВ = ВС.
а) В трапеции ABCD проведем высоту BH. Тогда Следовательно, угол ABH равен 30°, углы ADC и BAH равны 60°, а угол BCD равен 120°. Отрезки BC, AB и CD равны, следовательно, треугольник BCD — равнобедренный. Углы CBD и CDB равны
Таким образом, угол BDA равен 30°, тогда угол DBA равен 90°, а значит, отрезки AB и BD перпендикулярны как катеты прямоугольного треугольника ABD. По теореме о трех перпендикулярах отрезки B1D и AB перпендикулярны и, следовательно, B1D перпендикулярно A1B1.
Прямые DC2 и CD1 равны, тогда найдем прямую CD1 по теореме Пифагора из треугольника CD1D:
Рассмотрим прямоугольный треугольник ABD:
Найдем B1D по теореме Пифагора в прямоугольном треугольнике B1DB:
Применим теорему косинусов для треугольника B1DC2:
Ответ: б)
Критерии оценивания выполнения задания
Баллы
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б)
3
Получен обоснованный ответ в пункте б)
имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки
2
Имеется верное доказательство утверждения пункта а)
при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,
Известно что abcd равнобедренная трапеция найдите bc
Дана равнобедренная трапеция, в которой AD = 3BC, CM — высота трапеции.
а) Доказать, что M делит AD в отношении 2 : 1.
б) Найдите расстояние от точки C до середины BD, если AD = 18, AC =
а) Поскольку ABCD равнобедренная трапеция,
тогда откуда
б) В треугольнике AMC угол Треугольники BCO и MOD равны, поскольку угол CBO равен углу ODM, а угол C равен углу M. Тогда откуда O — середина BD, CO — искомое расстояние. Из равенства треугольников BCO и MOD следует равенство отрезков CO и OM, откуда
Приведем решение п. б) Романа Прокопенко.
В треугольнике CMD по теореме Пифагора найдем откуда CD = 10. В треугольнике BCD точка О — середина отрезка BD, поэтому CO медиана. Найдем ее длину по формуле длины медианы:
Критерии оценивания выполнения задания
Баллы
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б)
3
Получен обоснованный ответ в пункте б)
имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки
2
Имеется верное доказательство утверждения пункта а)
при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,