Телеметрическая информация что это

Телеметрическая информация

11. Телеметрическая информация

Е. Telemetry information

Информация, передаваемая телеметрической системой.

Примечание. Включает в себя информацию о результатах измерения физических параметров, состояния контролируемых объектов, изучаемых явлениях или событиях, а также информацию, обеспечивающую работу наземных средств телеметрической системы

3.14 телеметрическая информация: Совокупность данных о состоянии контролируемого объекта и пройденном пути, передаваемая от бортового навигационно-связного оборудования в диспетчерские пункты и центры.

3.20 телеметрическая информация: Совокупность данных о состоянии контролируемого объекта и пройденном пути, передаваемых от бортового навигационно-связного оборудования в диспетчерские пункты и центры.

3.15 телеметрическая информация: Совокупность данных о состоянии контролируемого объекта и пройденном пути, передаваемая от бортового навигационно-связного оборудования в диспетчерские пункты и центры.

3.8 телеметрическая информация: Совокупность данных о состоянии транспортного средства, передаваемая в диспетчерский центр по каналам связи.

Смотри также родственные термины:

13. Телеметрическая информация о событиях

Е. Event information

Часть телеметрической информации, содержащая информацию о событиях и представляемая конечным множеством символов или чисел без физической размерности

Полезное

Смотреть что такое «Телеметрическая информация» в других словарях:

телеметрическая информация — Информация, передаваемая телеметрической системой. Примечание Включает в себя информацию о результатах измерения физических параметров, состояния контролируемых объектов, изучаемых явлениях или событиях, а также информацию, обеспечивающую работу… … Справочник технического переводчика

Телеметрическая информация — 1. Информация, передаваемая телеметрическая системой Употребляется в документе: ГОСТ 19619 74 Оборудование радиотелеметрическое. Термины и определения … Телекоммуникационный словарь

телеметрическая информация о событиях — Часть телеметрической информации, содержащая информацию о событиях и представляемая конечным множеством символов или чисел без физической размерности. [ГОСТ 19619 74] Тематики телемеханика, телеметрия EN event information … Справочник технического переводчика

Телеметрическая информация о событиях — 13. Телеметрическая информация о событиях Е. Event information Часть телеметрической информации, содержащая информацию о событиях и представляемая конечным множеством символов или чисел без физической размерности Источник: ГОСТ 19619 74:… … Словарь-справочник терминов нормативно-технической документации

Телеметрическая информация о событиях — 1. Часть телеметрической информации, содержащая информацию о событиях и представляемая конечным множеством символов или чисел без физической размерности Употребляется в документе: ГОСТ 19619 74 Оборудование радиотелеметрическое. Термины и… … Телекоммуникационный словарь

измерительная телеметрическая информация — измерительная информация Часть телеметрической информации, которая после обработки ее на приемной стороне представляется совокупностью масштабированных чисел, сопоставимых с единицами соответствующих физических величин. [ГОСТ 19619 74] Тематики… … Справочник технического переводчика

служебная телеметрическая информация — служебная информация Часть телеметрической информации, обеспечивающая разделение телеметрических сообщений, их адресацию и масштабирование, а также содержащая сведения о текущей программе измерений и режимах работы передающей части… … Справочник технического переводчика

Измерительная телеметрическая информация — 12. Измерительная телеметрическая информация Измерительная информация Е. Measuring information Часть телеметрической информации, которая после обработки ее на приемной стороне представляется совокупностью масштабированных чисел, сопоставимых с… … Словарь-справочник терминов нормативно-технической документации

Служебная телеметрическая информация — 14. Служебная телеметрическая информация Служебная информация Е. Service telemetering information Часть телеметрической информации, обеспечивающая разделение телеметрических сообщений, их адресацию и масштабирование, а также содержащая сведения о … Словарь-справочник терминов нормативно-технической документации

Измерительная телеметрическая информация — 1. Часть телеметрической информации, которая после обработки ее на приемной стороне представляется совокупностью масштабированных чисел, сопоставимых с единицами соответствующих физических величин Употребляется в документе: ГОСТ 19619 74… … Телекоммуникационный словарь

Источник

Что такое телеметрия

Телеметрия — это автоматическая запись и передача данных из удаленных или труднодоступных источников в ИТ-систему в другом месте для мониторинга и анализа. Данные телеметрии могут передаваться с использованием радио, инфракрасного, ультразвукового, GSM, спутникового или кабельного телевидения, в зависимости от приложения (телеметрия используется не только при разработке программного обеспечения, но также в метеорологии, разведке, медицине и других областях).

В мире разработки программного обеспечения телеметрия может дать представление о том, какие функции конечные пользователи используют чаще всего, обнаруживать ошибки и проблемы, а также предлагать лучший обзор производительности без необходимости запрашивать обратную связь непосредственно от пользователей.

Как работает телеметрия

В общем смысле телеметрия работает через датчики на удаленном источнике, которые измеряют физические (такие как осадки, давление или температура) или электрические (такие как ток или напряжение) данные. Это преобразуется в электрические напряжения, которые объединяются с данными синхронизации. Они формируют поток данных, который передается по беспроводной или проводной среде или их комбинации.

На удаленном приемнике поток дезагрегируется, и исходные данные отображаются или обрабатываются в соответствии со спецификациями пользователя.

В контексте разработки программного обеспечения понятие телеметрии часто путают с регистрацией. Но ведение журнала — это инструмент, используемый в процессе разработки для диагностики ошибок и потоков кода, и он ориентирован на внутреннюю структуру веб-сайта, приложения или другого проекта разработки. Однако после того, как проект выпущен, телеметрия — это то, что вам нужно для автоматического сбора данных для реального использования. Телеметрия — это то, что позволяет собирать все эти необработанные данные, которые становятся ценной, действенной аналитикой.

Преимущества телеметрии

Основным преимуществом телеметрии является способность конечного пользователя контролировать состояние объекта или окружающей среды, находясь вдали от него. После того, как вы отправили продукт, вы не можете присутствовать физически, заглядывая через плечо тысячам (или миллионам) пользователей, которые взаимодействуют с вашим продуктом, чтобы выяснить, что работает, что легко, а что громоздко. Благодаря телеметрии эти идеи могут быть переданы непосредственно на панель инструментов, чтобы вы могли анализировать и действовать.

Поскольку телеметрия дает представление о том, насколько хорошо ваш продукт работает для ваших конечных пользователей — как они его используют — это невероятно ценный инструмент для постоянного мониторинга и управления производительностью.

Телеметрическая информация что это. Смотреть фото Телеметрическая информация что это. Смотреть картинку Телеметрическая информация что это. Картинка про Телеметрическая информация что это. Фото Телеметрическая информация что это

Телеметрия позволяет вам отвечать на такие вопросы:

Очевидно, что ответы на эти и многие другие вопросы, на которые можно ответить с помощью телеметрии, неоценимы для процесса разработки, позволяя вам постоянно совершенствовать и вводить новые функции, которые для ваших конечных пользователей могут показаться такими, как если бы вы читали их умы.

Проблемы телеметрии

Телеметрия, безусловно, фантастическая технология, но она не без проблем. Наиболее значимая проблема — и часто встречающаяся проблема — связана не с самой телеметрией, а с вашими конечными пользователями и их готовностью разрешить то, что некоторые считают шпионажем. Короче говоря, некоторые пользователи сразу же отключают прибор, когда замечают, что любые данные, полученные в результате использования вами вашего продукта, будут собираться или сообщаться.

Это означает, что опыт этих пользователей не будет учитываться при планировании вашей будущей дорожной карты, исправлении ошибок или решении других проблем в вашем приложении. Хотя это не обязательно является проблемой само по себе, проблема в том, что пользователи, которые склонны запрещать эти типы технологий, могут попасть в более технически подкованную часть вашей пользовательской базы. Это может привести к потере работоспособности программного обеспечения. Другие пользователи, с другой стороны, не обращают внимания на телеметрию или просто игнорируют ее.

Это проблема без четкого решения — и она не сводит на нет всю мощь телеметрии для управления развитием — но об этом следует помнить при анализе ваших данных.

Если вы хотите узнать больше — телеметрия контакты — вам в помощь.

Источник

Телеметрия

Телеметрия, телеизмерение (от др.-греч. τῆλε «далеко» + μέτρεω — «измеряю») — совокупность технологий, позволяющая производить удалённые измерения и сбор информации для предоставления оператору или пользователю, составная часть телемеханики. Термин образован от греческих корней «теле» — «удалённый» и «метрон» — «измерение». Хотя сам термин в большинстве случаев относится к механизмам с беспроводной передачей информации (например, используя радио или инфракрасные системы) он также заключает в себе данные, передаваемые с помощью других средств массовой коммуникации, таких как телефонные или компьютерные сети, оптическое волокно или другие проводные связи.

Для сбора данных обычно используют либо датчики телеметрии (с возможностью работы в телеметрических системах, то есть специальным встроенным модулем связи), либо устройства связи с объектом, к которым подключаются обычные датчики.
В телевидении и видеонаблюдении встречается другое понимание слова «телеметрия» [1] — дистанционное управление.

В качестве среды передачи данных используются как беспроводные (радио, GSM/GPRS, ZigBee, WiFi, WiMax, LTE), так и проводные (телефонные, ISDN, xDSL, компьютерные) сети (электрические или оптические).

Содержание

История

Передача информации по проводам берёт своё начало в 19-м столетии. Одна из первых линий передачи была создана в 1845 между Зимним дворцом российского императора и штабами армий. В 1874 французские инженеры установили систему датчиков определения погоды и глубины снега на Монблане, передающей информацию в режиме реального времени в Париж. В 1901 американский изобретатель Михалик запатентовал сельсин, индукционную машину для попеременной передачи синхронизированной информации на расстоянии. В 1906 был построен ряд сейсмических станций, связанных телеметрической связью с Пулковской обсерваторией. В 1912 Эдисон разработал телеметрическую систему для мониторинга подключаемых нагрузок к электросети. При постройке Панамского канала (законченной в 1913—1914) массово использовались телеметрические системы для мониторинга шлюзов и уровней воды.. [2]
Беспроводная телеметрия начала применяться в радиозондах, разработанных независимо друг от друга Робертом Бюро во Франции и Павлом Молчановым в России. Система Молчанова измеряла температуру и давления и преобразовывала результаты в беспроводной код Морзе.
В немецкой ракете Второй мировой войны Фау-2 использовалась система передачи примитивных многократных радиосигналов под названием «Мессина» для получения информации о параметрах ракеты, но эта система была столь ненадёжной, что Вернер фон Браун однажды заявил, что было бы эффективнее следить за ракетой в бинокль. Как в СССР, так и в США на смену системе «Мессина» быстро пришли более совершенные системы, основанные на импульсно-позиционной модуляции. [3]
В ранних советских телеметрических системах (ракетных и космических), разработанных в конце 1940-х, использовалась как импульсно-позиционная модуляция (например в телеметрической системе Трал, разработанной в ОКБ МЭИ), так и полосно-импульсная модуляция (например в системе RTS-5 разработанной в НИИ-885). В ранних американских разработках также использовались подобные системы, но позднее они были заменены на системы с импульсно-кодовой модуляцией (например, в космическом аппарате для исследования Марса «Маринер-4»). В поздних советских межпланетных аппаратах использовались избыточные радиосистемы, осуществляющие телеметрическую передачу с импульсно-кодовой модуляцией в дециметровом диапазоне и с импульсно-позиционной модуляцией в сантиметровом диапазоне. [4]

Применение

Телеметрия нашла своё применение в следующих областях:

Большинство видов деятельности, связанных с благополучным состоянием сельскохозяйственных культур и получения хороших урожаев, зависит от своевременного предоставления данных о состоянии погоды и почвы. Таким образом, беспроводные метеостанции играют важную роль в профилактике заболеваний и соразмерном орошении. Эти метеостанции передают на базовую станцию информацию о важных параметрах, необходимых для принятия решений: о температуре и относительной влажности воздуха, выпадении осадков и влажности листвы (для построения моделей профилактики заболеваний), солнечной радиации, скорости ветра (для расчёта испарения) и для увлажнённости почвы, посредством чего оценивается проникание воды в почву к корням растений, что необходимо для принятия решений об орошении.
Поскольку местные микроклиматы могут существенно различаться, такую информацию необходимо получать буквально прямо от сельскохозяйственных культур. Обычно станции мониторинга передают данные, используя наземное радио, хотя время от времени используются и спутниковые системы. Также используются солнечные батареи для обеспечения энергонезависимости станций от местной инфраструктуры.

Телеметрия стала существенным подспорьем в водопользовании, она применяется при оценке качества воды и измерения показателей потока. Телеметрия в основном применяется в автоматических водосчётчиках, мониторинге подводных вод, определении утечек в распределительных трубопроводах. Данные получаются практически в реальном времени и позволяют незамедлительно реагировать на происшествия.

Телеметрия (биотелеметрия) также используется для наблюдения за пациентами, находящимися под угрозой возникновения патологической сердечной деятельности, в основном пребывающих в кардиологических диспансерах. К таким пациентам подключаются измерительные, записывающие и передающие устройства. Зарегистрированные данные могут быть использованы врачами в диагностике состояния пациента. Благодаря функциям сигнала тревоги медицинские сёстры могут быть оповещены при возникновении резких обострений или опасных состояний для пациента.
Также есть система доступная для применения операционными медсёстрами для наблюдения за состоянием, в котором состояния сердца могут быть исключены. Или для наблюдения за реакцией организма на медикаментозное лечение такими антиаритмическим препаратами как дигоксин.

Телеметрия — доступная технология для больших сложных систем, таких как ракеты, реакторы (Reactor pressure vessel), космические аппараты, нефтяные платформы и химические заводы, поскольку она позволяет осуществлять автоматическое наблюдение, тревожную сигнализацию, запись и сохранение данных, необходимых для безопасных, эффективных действий. Такие космические агентства как НАСА, ЕКА и другие используют телеметрические/ телеуправляемые системы для сбора данных с действующих космических аппаратов и спутников.
Телеметрия жизненно важна в развитии ракет, спутников и авиации, поскольку данные системы могут быть уничтожены после или во время проведения теста. Инженерам нужна информация о критичных параметрах для анализа (и улучшения). Без применения телеметрии такого рода данные часто оказываются недоступными.

Телеметрия была жизненно важным источником о тестировании советских ракет для британской и американской разведок. Для этой цели США содержали пост прослушивания в Иране. В конечном итоге Советы раскрыли данную разведывательную деятельность американцев по сбору и расшифровке телеметрических сигналов о тестировании ракет. СССР с кораблей в Кардиганском заливе прослушивал сигналы при испытаниях британских ракет, проводимых там.

В ракетной технике телеметрическое оборудование становится неотъемлемой частью оборудования ракет, использующихся при наблюдении за процессом ракетного запуска, для получения информации о параметрах внешней среды (температуры, ускорений, вибраций) о энергоснабжении, точном выравнивании антенны и (на длинных дистанциях, например при космическом полёте) о времени распространения сигнала.

Телеметрия является ключевым фактором в современном автоспорте. Инженеры могут обрабатывать огромное количество данных, собираемых в ходе пробного заезда и использовать их для соответствующей модернизации автомобиля и достижении при этом оптимальных свойств. Системы, использующиеся в таких сериях гонок как Формула-1, настолько продвинулись, что позволяют высчитать возможное время прохождения круга и это то что ожидает пилот. Некоторые примеры необходимых измерений включают ускорения (силы тяготения) по трём осям, графики температур, скорость вращения колёс и смещение подвески. В Формуле 1 также записываются действия пилота, что позволяет команде оценить его производительность и при несчастном случае Международная автомобильная федерация может определить или исключить роль ошибки пилота как возможный случай.
В дополнение существуют некоторые серии, где реализуется идея «двухпутевой телеметрии». Идея предполагает, что инженеры имеют возможность обновлять калибровки в режиме реального времени, возможно, когда автомобиль проходит трассу. В Формуле 1 двухпутевая телеметрия появилась в начале 90-х годов (ТАГ электроникс) и реализовывалась через дисплей сообщений на приборном щитке, сообщения на котором команда могла обновлять. Его развитие продолжалось до мая 2001, когда впервые было получено разрешение устанавливать данную систему на автомобилях. С 2002 команды уже могли изменять режимы работы двигателя и отключать отдельные моторные датчики с пит-стопов, когда машина находилась на трассе. Начиная с сезона 2003 года двухпутевая телеметрия была запрещена на Формуле 1, однако данная технология всё ещё продолжает существовать и в конечно итоге находит своё применение в других видах гоночных или дорожных автомобилей.
В Формуле 1, двусторонний телеметрии всплыли в начале девяностых годов от TAG, электроника, и состояла из сообщения отображаются на приборной панели которого группа могла бы обновить.

На фабриках, стройках и в домах проводится наблюдение во множестве местоположений за энергопотреблением таких систем как климат-контроль вместе со связанными параметрами (например температурой) при помощи беспроводной телеметрии на одну центральную точку. Информация собирается и обрабатывается, позволяя принимать наиболее разумные решения касающиеся наиболее эффективных путей использования энергии. Такие системы также позволяют осуществлять профилактическое техническое обслуживание.

Телеметрия используется для изучения дикой природы, в частности для наблюдения за видами, находящимися под угрозой на индивидуальном уровне. Подопытные животные могут быть оснащены инструментарием, начиная от простых бирок и заканчивая камерами, пакетами GPS и передатчиками для обеспечения информацией учёных и управляющих.
Телеметрия используется в гидроакустических оценках рыбы, которые традиционно используются при мобильных обследований с лодок для оценки биомассы рыб и пространственного распределения. И наоборот есть техническое оборудование, размещаемое в стационарных местах, оно использует стационарные преобразователи для контроля прохождения рыбы. Хотя первые серьёзные попытки количественно оценить биомассу рыб были проведены в 1960-х годов, основные достижения в области оборудования и технологий произошли на плотинах гидроэлектростанций в 1980-х. Оценки прохождения рыбы проводятся 24 часа в сутки в течение года, определяется скорость прохождения рыбы, её размер, пространственное и временное распределение.
В 1970 была изобретена двухлучевая техника, позволяющая прямую оценку размера рыбы на месте её нахождения посредством сопротивления цели. Первая переносная расщеплено-лучевая гидроакустическая система была разработана HTI в 1971 и обеспечивала более аккуратные и менее вариабельные оценки сопротивления цели в виде рыбы, чем двухлучевой метод. Система также позволяла отслеживать путь рыбы на 3D, можно было проследить путь движения каждой рыбы и общую направленность движения.
Эта функция оказалась важной для оценки захваченных рыба в воде, утечки, а также для изучения мигрирующих рыб в реках. Эта функция оказалась важной для оценок перемещений рыбы в завихрениях водяного течения, также как и для изучения миграций рыб в реках. В последние 35 лет по всему миру используются десятки тысяч мобильных или стационарных аппаратов гидроакустической оценки.

В 2005 на семинаре в Лас-Вегасе было отмечено, что введение телеметрического оборудования, позволяющего торговым автоматам передавать информацию о продажах и учёте маршрутным грузовикам или в штабы. Эта информация может быть использована для разнообразных целей, таких как сообщение водителю перед поездкой какие пункты должны быть пополнены, что отменяет необходимость первой проверочной поездки перед проведением внутренней инвентаризации.
Торговцы начинают использовать бирки RFID для проведения учёта и предотвращения краж товаров. Большинство из данных бирок пассивно читаются считывающими устройствами RFID (например у кассы), но активные RFID могут периодически передавать информацию посредством телеметрии на базовую станцию.

Телеметрическое оборудование полезно в правоохранительной деятельности для отслеживания людей и надзором за имуществом. Осужденные в период испытания после досрочного освобождения могут носить браслет на лодыжке, устройство которого может предупреждать власти о нарушении преступником условий своего освобождения, таких как отступление от установленных границ или посещение неразрешённых мест. Телеметрическое оборудование даёт возможность применить идею «машин-ловушек». Правоохранительные органы могут оснащать машины камерами и следящим оборудованием и оставлять машины в тех местах, где ожидается их угон. После угона телеметрическое оборудование передаёт информацию о местоположении транспортного средства и сотрудники правоохранительных органов могут заглушить мотор и запереть двери после остановки его выехавшими на вызов полицейскими.

Передача и обработка данных в системах телеметрии

Телеметрическая информация что это. Смотреть фото Телеметрическая информация что это. Смотреть картинку Телеметрическая информация что это. Картинка про Телеметрическая информация что это. Фото Телеметрическая информация что это

Для сбора и передачи информации в системах телеметрии могут использоваться как последовательные протоколы RS-232, RS-485, CAN, так и различные сетевые протоколы TCP/IP, Ethernet. Последние обычно называются системы телеметрического IP-мониторинга объектов, но термин ещё не устоялся. В технике часто применяется термин IP-мониторинг для программного мониторинга компьютерных сетей, в то же время термин IP-мониторинг применяется для обозначения систем наблюдения, видеонаблюдения и управления, телеметрического контроля по IP за объектами. Возможно со временем, эти два близких понятия сведутся в один класс. В последнее время (около середины 2000 годов) для облегчения инсталляции, обеспечения многофункциональности, интеграции с другими системами в телеметрии применяются компьютеры, различные серверы и микропроцессорные системы, имеющие в основе переплетение различных протоколов, встроенные средства переработки и отображения информации, часто имеющие кольцевые базы данных, а также и возможности мультизонального сбора информации с многочисленных датчиков, разбросанных зачастую вне физических пределов самих систем, либо и вовсе на другой стороне земного шара, к примеру различные беспроводные датчики, IP датчики и тд.

Международные стандарты

Как и в других телекоммуникационных областях существуют международные стандарты, установленные такими организациями как CCSDS [

2] для телеметрического оборудования и программного обеспечения.

Источник

Телеметрия и программное обеспечение

Телеметрическая информация что это. Смотреть фото Телеметрическая информация что это. Смотреть картинку Телеметрическая информация что это. Картинка про Телеметрическая информация что это. Фото Телеметрическая информация что это

Около 6 лет назад я участвовал в проекте по изготовлению железа и софта для одной крупной Североамериканской медицинской компании. Стоя возле тестовой стойки, в которой под нагрузкой было несколько устройств, я задал себе вопрос: «Если что-то пойдет не так, как нам ускорить поиск и исправление ошибки?»

С момента возникновения этого вопроса и до сегодняшнего дня было сделано очень много, и я хотел бы поделиться с вами тем как сбор и анализ телеметрии в софте и железе помог значительно снизить время обнаружения и исправления ошибок в целом спектре проектов, в которых я участвовал.

Введение

Телеметрия происходит от древнегреческого τῆλε «далеко» + μέτρεω — «измеряю».
Все очень просто, любые измерения, какие только может выдумать штат различных инженеров и возможно ученых, целевая система шлет в центр обработки для визуального и автоматического контроля и обработки.

Приблизительно вот так:

Телеметрическая информация что это. Смотреть фото Телеметрическая информация что это. Смотреть картинку Телеметрическая информация что это. Картинка про Телеметрическая информация что это. Фото Телеметрическая информация что это

Когда на стороне сервера это может например выглядеть вот так:

Телеметрическая информация что это. Смотреть фото Телеметрическая информация что это. Смотреть картинку Телеметрическая информация что это. Картинка про Телеметрическая информация что это. Фото Телеметрическая информация что это

Предыстория

Как то, наблюдая за работой наших QA инженеров, я задался вопросом – почему сложные устройства вроде спутников, ракет, машин имеют телеметрию, а мы, создавая, по сути, программные части операционных комнат, роботов, сложных программных решений, даже не задумываемся об этом направлении?

Количество кода колоссально, а способов понять, что что-то пошло не так меньше чем пальцев на одной руке:

Велосипед или дай прокатиться

Как нас учили: велосипеды — это познавательно и увлекательно, но сначала поищите существующие решения, чем я и занялся.

По хорошей традиции начал с требований:

Под эти требования на момент начала 2011 года не попадал ни один проект, который я нашел, даже близко, даже половина требований.

Телеметрия для софта в виде готовых и открытых решений почти отсутствовала как класс, большие игроки делали для себя все сами и не особо спешили делиться.

Второй неожиданностью была реакция коллег – безразличие или в худшем случае неприятие, но, к счастью – это продлилось не долго, до первых результатов.

Единственное решение, которое я нашел на тот момент (2011 год), была библиотека P7 располагавшаяся в то время на google code. Функционал был беден, из платформ был только X86, на сервер было сложно смотреть без слез, но были и плюсы:

Первый шаг

Встраивание библиотеки в наш код прошло легко и без проблем, но тут же возник вопрос: какие красивые графики мы хотим видеть и какие показания записывать? Это только, кажется, что вопрос прост, на самом деле – он сложен и коварен.

На первых порах и без опыта мы стали писать сравнительно ничтожное количество телеметрии:

Телеметрическая информация что это. Смотреть фото Телеметрическая информация что это. Смотреть картинку Телеметрическая информация что это. Картинка про Телеметрическая информация что это. Фото Телеметрическая информация что это

Первое же боевое крещение дало прекрасные результаты: после пары дней незаметной работы и воспроизведения нескольких багов мы, наконец-то, смогли понять природу многих из них:

Оказалось, что тестовый код с машины одного из инженеров попал в производство и регулярно подвешивал один из потоков, на пол секунды, на секунду. Эта проблема тоже была на графиках отчетливо видна – взлет CPU, memory, бешенная работа менеджера памяти и вдруг посередине он зависал на несколько сот миллисекунд (иногда до нескольких секунд):

После того как мы увлеченно с коллегами тыкали пальцами в монитор и вопрошали «¿Qué pasa?», находили ответ и радовались как дети – вопрос о полезности больше не стоял, мы получили новую игрушку и хотели играть дальше.

Переходим на бег

После первого успеха мы начали последовательно увеличивать количество обязательных счётчиков:

Заключение

В качестве заключения позвольте представить несколько фактов:

Хотел бы надеяться, что эта статья позволит Вам задаться тем же вопросом что и мне «поможет ли телеметрия нашему продукту?», то можно сказать, что писал я ее не зря, так как в индустрии программного обеспечения этот вопрос невероятно редко звучит, бытует мнение, что это удел космоса и оборонки.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *