за что отвечает полетный контроллер
Полетный контроллер, для чего он нужен
Полетные контроллеры делятся на 3 группы:
Каждый контроллер имеет свое программное обеспечение, которое управляет всем оборудованием. Самые популярные контроллеры можно прошивать и гибко настраивать с помощью специальных программ, таких как CleanFlight, Betaflight и Raceflight.
Какие бывают полетные контроллеры?
Ниже рассмотрим вопрос — какие бывают полетные контроллеры, а точнее, для каких целей.
Гоночные полетные контроллеры
Naze32, также на базе этого контроллера есть SP Racing F3:
На нем присутствуют все стандартные датчики – гироскоп и акселерометр, а в расширенной версии DELUXE также есть барометр и компас.
Гироскоп и акселерометр определяют текущее расположение дрона в пространстве. Барометр определяет высоту по давлению (чтобы удерживать высоту, например), компас для удержания направления полета.
На сегодня, полетные контроллеры серии F4 являются самыми популярными полетными контроллерами для мини и гоночных квадрокоптеров, так как прекрасно работают с такими программами, как CleanFlight, Betaflight и Raceflight. На их смену уже выходит серия F7, становясь все более популярной.
Разработка прошивок для полетного контроллера F3 уже прекратилась из-за ограничения ресурсов, поэтому выбирайте для покупки F4 или F7:
Также еще два популярных контроллера:
KISS – прошивать своей прошивкой нельзя. Имеет графический интерфейс с минимумом настроек.
LUX – такой же гибкий, как Naze32, но все же уступает ему. Прошивать можно.
Контроллеры для съемки видео и фото с дрона
Поддерживает весь набор датчиков (GPS, телеметрию, OSD и т.д.)
ArduPilot AMP поддерживает GPS и автономный полет по заданным координатам. Тоже достаточно популярный контроллер, но стоит дороже обычных из-за наличия более важных датчиков.
Vector Flight Controller- профессиональный полетный контроллер с встроенной системой Eagle Tree.
Новичок тоже сможет на таком летать. Эти контроллеры стоят дорого, а вес и размер стремятся к идеалу для аэросъемки.
Контроллеры для автономных полетов
3DR Pixhawk — самый популярный контроллер для автономных полетов. На его борту есть резервная система, а также он поддерживает все известные датчики для дронов.
MultiWii Pro — дешевый и доступный, позволяет отлично стабилизировать коптер, также на нем есть барометр, магнитометр и GPS.
Теперь, после краткого обзора типов полетных контроллеров, перейдем к полному описанию.
Прошивки полетного контроллера, их виды
Полетные контроллеры отличаются не только по типу компонентов, из которых они состоят, но и по прошивкам, на которых они работают, то есть программным обеспечением, на котором работает полетный контроллер.
Как уже написано выше, на сегодня самыми популярными прошивками являются:
Что из себя представляет программное обеспечение полетного контроллера — прошивка? Это набор правил и алгоритмов, которые обрабатывает процессор.
А теперь ответ на вопрос, как прошить полетный контроллер? Конкретно для каждой прошивки разработан свой конфигуратор — это специальная программа, которая загружает в полетный контроллер программное обеспечение, а зачем конфигуратор работает в роли графического интерфейса прошивки — чтобы вам было наглядно и удобно настраивать свой квадрокоптер.
С помощью графического интерфейса можно вносить различные настройки в прошивку, например, менять параметры PID, включать и редактировать фильтры, включать или отключать датчики, настраивать начальные и максимальные обороты двигателей и так далее. Но стоит отметить, что в зависимости от прошивки у них будет разный интерфейс, критичных отличий, конечно, не будет, но все же.
Процессор полетного контроллера
От процессора будет зависеть то, насколько быстро будут обрабатываться поступающие к нему данные. Процессоры делятся по поколениям: F1, F3, F4, F6. Вот такие странные поколения, где пропущены 2-е и 6-е поколения. Отличаются они частотой работы и архитектурой:
Сейчас все новые полетные контроллеры поставляются с процессором 7-го поколения, так как обрабатывать фильтры и PID становится все труднее, прогресс шагает километровыми шагами в этой сфере. Но у многих пилотов ПК на процессорах 3-го поколения, так как F3 был самым (да и остается) массовым поколением со стабильной работой.
Гироскоп и акселерометр полетного контроллера
Гироскоп и акселерометр — очень важные датчики, они определяют положение квадрокоптера в пространстве, а также движется ли он, посылают эти данные процессору, а тот уже решает, какому двигателю поддать газа, а какому наоборот, снизить обороты.
Акселерометр выполняет роль стабилизатора в пространстве, есть даже такой режим полета — «Режим стабилизации», при котором квадрокоптер невозможно будет перевернуть в воздухе и он всегда будет держаться параллельно земле (если просто отпустить стики на пульте). Опытные пилоты почти всегда летают в режиме АКРО, поэтому они отключают акселерометр или используют его крайне редко.
Гироскоп же выполняет роль определения положения квадрокоптера в пространстве.
Какие самые популярные гироскопы используются в полетных контроллерах? Смотрим таблицу ниже:
Гироскоп | Протокол коммуникации (BUS) | Макс. частота работы гироскопа |
MPU6000 | SPI, i2c | 8K |
MPU6050 | i2c | 4K |
MPU6500 | SPI, i2c | 32K |
MPU9150* | i2c | 4K |
MPU9250* | SPI, i2c | 32K |
ICM20602 | SPI, i2c | 32K |
ICM20608 | SPI, i2c | 32K |
ICM20689 | SPI, i2c | 32K |
MPU9150 — это MPU6050 со встроенным магнитометром AK8975, а MPU9250 — это MPU6500 и тоже с магнитометром.
Номер и название гироскопа можно найти на самом чипе, например это — MPU-6000:
Выбор гироскопа: частота опроса и шумы
Есть два критерия, которые нужно учитывать при выборе полетного контроллера с конкретным гироскопом, это частота работы и чувствительность к шумам (электро- и механическим).
На сегодня самыми популярными и надежными считаются гироскопы MPU6000, у них частота работы 8KHz, а также они достаточно не чувствительны к шумам. Советуем не покупать полетные контроллеры с гироскопами MPU6500 и MPU9250, у них хоть и частота выше, но они больше подвержены воздействию шумов.
Серия гироскопов ICM работает лучше и плавнее, чем MPU6000 на 32KHz, но из-за шумных двигателей и регуляторов оборотов производительность ICM будет ниже, чем MPU6000. Например, ICM20602 на Raceflight Revolt V2 или ICM20689 на Kakute F4, оба этих гироскопа могут работать на частоте 32KHz, но с регуляторами оборотов, которые генерируют много шума, они работать будут хуже, чем MPU6000. По этой причине на полетные контроллеры устанавливают сетевые фильтры для частичного удаления шумов.
Чтобы частично убрать механические шумы (вибрацию), полетный контроллер следует устанавливать на резиновые подушки или любой другой пористый материал, который сможет гасить вибрацию, например кусок резины или вспененного материала.
i2c и SPI
Порт UART в полетном контроллере
Аббревиатура UART с английского расшифровывается как (Universal Asynchronous Receiver/Transmitter) — универсальный асинхронный приемник/передатчик.
К порту UART подключаются различные периферийные устройства, такие как, приемник, различная телеметрия и так далее. У порта есть два контакта для обмена данными — прием и передача.
На фото ниже вы можете увидеть пример UART порта и их настройки в Betaflight, точнее, вы можете назначить в этой вкладке порту любое устройство, которое поддерживает обмен данными:
Сколько бывает портов UART на полетном контроллере?
UART портов много не бывает — чем больше, тем более гибко можно будет настраивать ваш квадрокоптер, а также они будут дублировать друг друг в случае поломки.
Но само количество портов зависит от размеров платы полетного контроллера и от того, как расположены на ней компоненты, а также от типа процессора, который использует ПК. 3-е и 4-е поколение полетных контроллеров (F3-F4) имеют от 3 до 5 UART, а 7-е поколение — 7 и более. Оно и понятно, слабый процессор не сможет физически обрабатывать столько периферии.
F1 | F3 | F4 | F7 |
2 UART | 3-5 UART | 3-6 UART | 7+ UART |
Инвентированный сигнал и UART
Инвентированный сигнал поддерживают полетные контроллеры 3-го и 7-го поколения, а вот 1-е и 4-е поколения не могут.
Передатчики FrSky с протоколом работы SBUS и SmartPort на выходе инвертируют свой сигнал, и их могут обработать только процессоры нового поколения, такие установлены на 7-м и 3-м поколении (F3 и F7), так как у них уже есть встроенный инвертор.
А вот для устаревших поколений (F1 и F4) нужно перед портом UART устанавливать инвертор, который будет обрабатывать и преобразовывать сигнал и передавать его уже в UART. Хотя в некоторых полетных контроллерах F4 производители сразу устанавливают инверторы для SBUS и SmartPort, пилоту можно сразу подключать приемник к ПК.
Если у вас закончились UART порты, то можно воспользоваться функцией в Betaflight «soft-serial», благодаря которой можно создавать виртуальные UART. С помощью ПО Betaflight создается эмуляция этого порта, как будто он есть физически, но на самом деле его нет. Также стоит отметить, что такой порт будет работать значительно медленнее, чем физический и он не подойдет для подключения приемника, например, так как такое замедление критично. Процессор тоже будет работать с повышенной нагрузкой.
Размеры платы полетного контроллера
Монтажная схема полетного контроллера — это расстояние между отверстиями для крепления ПК к раме дрона. В этом вопросе есть стандарт, который состоит из 3 схем:
Размер платы соответствует размеру дрона, который вы будете собирать, например, 30,5 х 30,5 мм устанавливаются в рамы размером от 200 мм и больше, а на меньшие рамы устанавливаются последующие размеры полетных контроллеров.
Какие есть дополнительные функции в полетном контроллере?
OSD — это очень важная и нужная функция. OSD накладывает на видеопоток дополнительную информацию с различных датчиков квадрокоптера, например, напряжение аккумулятора, высота, скорость и так далее. Любой, кто сталкивался с minimOSD, знает, какая трудность — подключить и настроить эту плату, да и мало подключить, ее еще нужно программатором прошить, и только после этого плату OSD можно будет настраивать в Betaflight.
Поэтому делайте выбор в пользу полетных контроллеров с встроенным OSD, это сбережет вам нервы и время.
Плата разводки питания (PDB)
К плате разводки питания подключаются аккумулятор и двигатели с регуляторами оборотов, а также полетный контроллер и прочая периферия. У некоторых ПК такая плата уже есть, они совмещены. Это, конечно, плюс, но где плюсы, там и минусы — в такой компоновке будет мало места, и в случае поломки ее будет сложнее устранять.
Датчик тока (Current Sensor)
На плате разводки обычно есть контакты VBAT, куда подключаются контакты полетного контроллера и ПК снимает данные о текущем напряжении, но свой собственный датчик тока эффективнее.
Регуляторы оборотов (ESC)
Наверняка вы уже слышали или видели регуляторы оборотов 4 в 1, такая квадратная плата вместо 4 плат. Инженеры решили интегрировать регуляторы сразу в полетный контроллер и теперь, если вы купите такой ПК, вам можно будет припаять двигатели напрямую к ПК. О целесообразности такого выбора решать только вам.
Черный ящик (Blackbox)
Черный ящик нужен для записи логов работы квадрокоптера, туда записываются всевозможные данные, которые обрабатывает полетный контроллер. Есть два места, куда можно вести запись логов, это флеш-память полетного контроллера и SD-карта (флешка).
Плюсы встроенной флеш-памяти:
Минусы встроенной флеш-памяти:
Плюсы SD-карты:
Минусы SD-карты:
Типы коннекторов
Это, конечно, не функция, но не рассказать об этом нельзя. На полетном контроллере есть 3 типа соединений между периферией:
Пластиковые коннекторы в основном используются для подключения периферии, которую иногда нужно отключать и снимать, в этом их плюс — быстро снять/подключить. Они не очень прочные, но удобные.
Контактные площадки для припаивания удобны в использовании, но если контакт сильно нагреется во время использования, то есть вероятность, что он оторвется. То же самое и в вопросе о разрыве при сильном натяжении.
Отверстия для припаивания удобны тем, что провод гораздо прочнее будет «сидеть» в пазу. Также можно использовать угловые штифты для более удобного подключения периферии.
Регулятор напряжения (BEC)
На современных (да и не только) ПК есть отдельные контакты для подключения источника потребления на 5V и на 12V, иногда встречаются даже на 9. Хоть сейчас почти все FPV-компоненты рассчитаны на ток в широком диапазоне и их можно подключать даже к аккумулятору, мы все же рекомендуем подключать их к отдельному входу на полетном контроллере, где ток подается стабильным, тогда как в аккумуляторе он будет постоянно «скакать» от нагрузки.
Светодиод состояния
Удобная функция, которая отображает текущее состояние полетного контроллера. Обычно у светодиода есть 2 цвета — красный и синий. В зависимости от того, каким и сколько раз мигает ПК — пилот понимает, все ли в порядке. Эта спецификация всегда указывается с конкретным контроллером.
Кнопка для перехода в режим прошивки
Без такой кнопки не обойтись ни одному полетному контроллеру. Для прошивки замыкают 2 контакта, затем подключают к компьютеру и запускают Betaflight конфигуратор или любой другой. Есть два типа:
С кнопкой удобнее — нажал отверткой и все, а вот для контактов нужно использовать пинцет или скрепку, чтобы закоротить их.
Какие еще бывают функции в полетном контроллере?
Заключение
Как вы заметили, полетный контроллер — это очень важный узел в квадрокоптере и занимает очень много места в теории. И на вопрос, как правильно выбрать полетный контроллер, у вас не должно оставаться этих самых вопросов, а если остались, вы должны понять, для чего вам нужен квадрокоптер, для каких нужд. Если для гонок и драйва, то одни контроллеры, если для съемки, то другие. Также стоит учитывать ваши навыки, если вы новичок, то не стоит брать дорогие контроллеры с кучей датчиков или наоборот те, в которых абсолютно ничего не настроено и даже нет прошивки.
Также стоит учитывать бюджет, который вы можете потратить, так как цены очень сильно разнятся. Например, SP Racing F7 с OSD для гоночных дронов стоит от 1600 до 2500 рублей, а вот DJI A3 для профессиональной фото- и видеосъемки стоит 50 000 – 60 000 тысяч рублей.
Подведем итоги:
Выбирать полетный контроллер следует из ваших потребностей – для гонок, для съемки или для автономных полетов, а также, а также, на основе статьи, что написана выше.
RCDetails Blog
О коптерах и не только
Выбираем полетный контроллер для квадрокоптера
Количество полётных контроллеров, имеющихся в продаже, может смутить новичка. Цель этой статьи — показать каким образом можно выбрать подходящий для вашего коптера.
Если вы только начинаете летать, тогда не забудьте прочесть руководство для начинающих пилотов гоночных коптеров.
Я собрал все характеристики всех полетных контроллеров в одну таблицу, так что вы легко их сможете сравнить.
Содержание
Что такое полетный контроллер?
Полетный контроллер (ПК, flight controller, FC) — это мозг летательного аппарата. По сути, это плата с кучей датчиков, которая отслеживает движение дрона и команды от пользователя. Используя полученные данные, она управляет скоростью вращения моторов для того, чтобы коптер двигался так, как задумал пилот.
У всех ПК имеется базовый набор датчиков: гироскопы (Gyro) и акселерометры (acc); некоторые продвинутые конфигурации имеют также барометр (измеряет давление воздуха, а значит и высоту полета) и магнитометр (компас).
ПК — это также точка подключения всей прочей периферии типа GPS, светодиодов, сонаров и т.д.
Контроллеры для гоночных дронов очень быстро эволюционируют: становятся меньше, имеют всё более быстрые процессоры, более современные датчики и всё больше встроенных функций.
Эволюция полетных контроллеров
Подключение
Вот пример подключения всех основных компонентов коптера к полетному контроллеру.
Прошивки для ПК
Помимо различий в железе, имеются различия и в прошивках, которые работают на этих ПК и у которых разный функционал и разные области применения. Например, iNAV разработан для использования с GPS, а KISS — больше предназначен для гонок.
Вот список прошивок для мини-коптеров. Если вы совсем в этом не разбираетесь, то мой вам совет, используйте Betaflight.
Самые популярные прошивки для полетных контроллеров
Betaflight — это прошивка с открытым исходным кодом, разрабатывается и поддерживается сообществом хоббийщиков. У нее самая большая пользовательская база, так что в случае каких-то вопросов вам быстро помогут. К тому же она поддерживает максимальное число полетных контроллеров.
Другие популярные прошивки для FPV дронов — это FlightOne и KISS. Их исходный код закрыт, а железо и сами прошивки поддерживаются только производителями, так что с ними работает очень небольшое число полетных контроллеров.
После того, как вы выберите прошивку, ищите совместимый с ней полетный контроллер.
Интерфейс и настройка
Современные прошивки для ПК можно настраивать, используя специальные программы, установленные на компьютер или смартфон; или даже прямо с пульта управления. У каждой прошивки свой пользовательский интерфейс управления, при помощи которого меняются настройки. Некоторые программы очень похожи друг на друга, но установка одних и тех же параметров в разных прошивках может дать совершенно разный результат, так что не торопитесь, а основательно изучите выбранную прошивку.
«Тюнинг» — этот термин мы используем, когда меняем ПИД коэффициенты (PID), рейты (rates) и некоторые другие настройки. При помощи тюнинга мы можем настроить коптер «под себя».
Процессор (микроконтроллер)
Процессоры в полетных контроллерах на самом деле должны называться не процессорами, а микроконтроллерами; в них хранится прошивка и они же её исполняют.
В настоящее время есть 5 основных типов процессоров: F1, F3, F4, F7 и H7. В основном они отличаются размером памяти и вычислительными мощностями.
F1 | F3 | F4 | F7 | H7 | |
Частота | 72 МГц | 72 МГц | 168 МГц | 216 МГц | 480 МГц |
Память | 128 кБ | 256 кБ | 1 МБ | 1 МБ | 128 кБ |
Мы рекомендуем брать F4 или F7, новые прошивки уже не поддерживают серии F1 и F3, т.к. в них недостаточно места.
Процессоры для ПК (слева направо): STM32 F1, F3, F4
UART (последовательные порты)
UART расшифровывается как Universal Asynchronous Receiver/Transmitter, что означает асинхронный последовательный порт.
UART — это, как правило, аппаратный последовательный интерфейс, который позволит вам подключить разные внешние устройства к полетному контроллеру. Например, приемник, телеметрию, транспондер для гонок, управление видеопередатчиком и т.д.
У каждого последовательного порта два контакта: TX — для передачи, RX — для приема. Запомните, TX на периферийном устройстве подключается к RX на полетном контроллере и наоборот!
Пример: на полётнике есть UART3 (контакты R3 и T3) и UART6 (контакты R6 и T6). Вы можете назначить им задачи на вкладке Ports в Betaflight конфигураторе.
Количество последовательных портов в полетном контроллере
Возможно, вам потребуются (а может и нет) дополнительные последовательные порты, чем больше свободных есть, тем проще будет в будущем.
Количество портов зависит от дизайна платы и используемого процессора. Например, на ПК с F1 обычно только 2 порта, у F3 и F4 может быть от 3 до 5, а у F7 — шесть или даже 7.
F1 | F3 | F4 | F7 |
2 порта | 3-5 портов | 3-6 портов | 6-7 портов |
Инвертирование сигнала последовательного порта
Процессоры F3 и F7 могут инвертировать сигнал встроенным инвертором, а F1 и F4 — нет.
Сигналы Frsky SBUS и SmartPort являются инвертированными, поэтому владельцам ПК на F3 и F7 повезло, такие данные понимаются без проблем (F3 и F7 — более новые серии процессоров, подробнее тут).
Однако, более старые процессоры, типа F1 и F4 требуют наличия внешнего инвертора сигнала, который и подключается к соответствующему последовательному порту. Для удобства пользователей некоторые ПК на F4 уже имеют схемы для инверсии сигналов SBUS и SmartPort, так что приемник подключается напрямую к ПК. Если встроенного инвертора нет, то вам придется использовать одно обходных решений, например, программную эмуляцию последовательного порта (soft serial) или найти неинвертированный сигнал на приемнике.
Если портов не хватает, можно использовать программную эмуляцию (soft serial) чтобы «создать» ещё больше портов. К сожалению, эмулируемые порты работают медленнее аппаратных (нельзя выставить большую скорость) и не подходят для важных задач, где требуется быстрая реакция, например не подойдут для работы с приемниками. Ну и, конечно, программная эмуляция требует довольно много ресурсов процессора.
Гироскопы (Gyro), инерциальная навигация (IMU)
Цель датчиков на ПК определить ориентацию коптера в пространстве и отследить его движения. Микросхема с датчиками (IMU) содержит как гироскопы, так и акселерометры.
Самые часто используемые полетные режимы Betaflight — это, наверное, Acro (акро, или ручной режим) и Angle (самовыравнивание). В акро режиме используются только гироскопы, а в Angle и гироскопы, и акселерометры.
А т.к. большинство пилотов FPV дронов летают в Acro, то акселерометры часто просто отключаются в настройках Betaflight, это позволяет сэкономить вычислительные ресурсы. По этой же причине под инерциальной навигацией обычно подразумевают только гироскопы (gyro).
Наиболее популярные гироскопы, используемые в полётниках:
IMU | Способ подключения, шины | Макс. частота сэмплирования |
MPU6000 | SPI, i2c | 8K |
MPU6050 | i2c | 4K |
MPU6500 | SPI, i2c | 32K |
MPU9150* | i2c | 4K |
MPU9250* | SPI, i2c | 32K |
ICM20602 | SPI, i2c | 32K |
ICM20608 | SPI, i2c | 32K |
ICM20689 | SPI, i2c | 32K |
* MPU9150 — это MPU6050 со встроенным магнитометром AK8975, а MPU9250 — это MPU6500 с тем же магнитометром.
Выяснить тип можно взглянув на маркировку микросхемы, вот для примера популярный вариант Invensense MPU-6000.
Гироскопы и акселерометры на полетном контроллере
Выбор гироскопов: что лучше высокая частота опроса или шум?
У IMU есть две основные характеристики: максимальная частота сэмплирования и насколько полученные данные будут зашумлены (механическими вибрациями и электрическими помехами).
В настоящее время очень часто используют микросхему MPU6000, которая поддерживает частоту опроса до 8k, и обладает (неоднократно проверено) хорошей устойчивостью к разного рода шумам и помехам. Главное стараться избегать MPU6500 и MPU9250, хотя у них больше рабочая частота, но и уровень шумов тоже значительно выше.
Учтите, что разные серии гироскопов ICM имеют разные характеристики. ICM20689 — один из худших вариантов, легко восприимчив к шуму, да и с надежностью проблемы. Если приходится выбирать из ICM, то берите модель 20602.
В последнее время появляется всё больше и больше ПК с гироскопами на отдельной плате с антивибрационной развязкой (кусок поролона, чтобы снизить вибрации от моторов).
Антивибрационное крепление гироскопов на ПК Kakute F4
Обновление (окт 2019). Начиная с версии Betaflight 4.1 нет поддержки частоты 32кГц, так что если вы используете гироскопы ICM с Betaflight, то looptime будет не больше 8кГц.
Скорость работы гироскопов — это палка о двух концах: если питание чистое, и шумов нет, тогда серия ICM на 32k будет работать лучше, чем MPU6000. Однако, если регуляторы и моторы начнут генерировать помехи, а коптер вибрирует, тогда ICM хуже, чем MPU6000.
i2c или SPI?
i2c и SPI — это названия шин для подключения гироскопов к процессору. Выбранная шина может ограничить частоты опроса гироскопов и ограничит looptime.
Лучше всего использовать SPI, т.к. она позволяет работать с бОльшими частотами, чем i2c, у которой лимит в 4k. Практически все современные ПК используют SPI.
Расположение элементов
Расположение контактов и разъемов влияет на простоту сборки.
Многие пилоты смотрят только на технические характеристики полетных контроллеров и упускают важность дизайна/компоновки элементов.
Хорошие пример — CLRacing F7 и Kakute F7. Два отличных полётника, с уверенностью могу их порекомендовать, но глядя только на компоновку скажу, что CLRacing F7 однозначно выигрывает, все контактные площадки расположены по краям платы и сгруппированы по выполняемым функциям. Контакты на Kakute скучкованы, в результате легко получить комок проводов.
Полетный контроллер CL Racing F7
Полетные контроллер Kakute F7
Это дело вкуса, а он у всех разный.
Полетные контроллеры «всё-в-одном» и их функционал
Полетники «Всё-в-одном» («All In One») имеют встроенную плату распределения питания (PDB) и огромные контакты для толстых проводов, идущих от аккумулятора. Термин появился в те времена, когда обычно применялись отдельные PDB со стабилизаторами питания для полетных контроллеров, но сейчас в ПК встраивают очень много компонентов, так что термин теперь значит немного другое.
Одной из первых функций, которую встроили в ПК — это OSD (экранное меню) — Betaflight OSD.
Ещё одна бесценная фишка — датчик тока: с ним гораздо проще оценить степень разряда аккумулятора, и он же отличный инструмент для тестирования. Тут более подробно про его калибровку (англ).
Также часто в ПК встраивают барометр и магнитометр (компас).
Нет «правильного» полётника «все-в-одном», но при желании можно найти плату, в которой есть всё, даже приёмник, видеопередатчик и даже регуляторы.
Первым таким ПК у меня был RacerStar Tattoo F4S, он не очень надежный.
Регуляторы скорости «4-в-1» и ПК «всё-в-одном»
Сейчас регуляторами «4-в-1» никого не удивишь, и часто они разработаны для сборки в стек с конкретным полетным контроллером и в этом случае они играют роль PDB. Разъемы и схемы соединений не стандартизированы, так что перед покупкой убедитесь в совместимости ПК и таких регулей.
Можно ли использовать полетный контроллер типа «всё-в-одном» с регуляторами «4-в-1»? Да, можно, но мы не рекомендуем.
ПК «все-в-одном» лучше использовать с 4 отдельными регуляторами.
Обычный полетный контроллер лучше совмещать с PDB и отдельными регуляторами или с регуляторами «4-в-1».
Формат крепежа
В данном случае подразумевается расстояние между монтажными отверстиями в плате полетного контроллера. Обычно это 30,5 х 30,5 мм, 20 х 20 мм или 16 х 16 мм. Формат крепежа определяет как размеры платы, так и размеры модели. В коптерах с 5″ пропами обычно используются ПК с крепежом 30,5 х 30,5, в более мелких коптерах — 20 х 20 мм. Формат 16 х 16 мм набирает популярность в классе коптеров с диагональю до 100 мм.
Прочие функции
Blackbox (черный ящик): чип флэш-памяти или MicroSD карточка?
Есть два способа записать и сохранить данные черного ящика: на чип флэш-памяти, установленный на плате ПК или на MicroSD карточку, вставленную в слот.
Чип памяти дешевле, но как правило он имеет небольшую ёмкость и хранит относительно немного данных. Обычно 10 — 20 минут полетного времени (в зависимости от частоты запрашиваемых данных). Кроме того, загрузка данных с этого чипа идет довольно медленно, может уйти до 5 минут времени на загрузку лога длиной всего 1 минуту.
ПК со встроенным слотом для MicroSD карточек, позволяют хранить данные неделями, без необходимости очистки свободного места. Кроме того, чтение логов очень быстрое.
Логи черного ящика больше нужны опытным пилотам, для диагностики почти незаметных проблем с летными характеристиками; и для гонщиков, старающихся выжать всё возможное из своего коптера. Для обычных хоббийщиков он, возможно, и не нужен.
Кстати, есть еще третий вариант — можно купить внешний логгер (Open Logger) со слотом для microSD и подключить его через свободный UART к ПК.
Типы разъемов
Три основных типа разъемов на полетных контроллерах:
Пластиковые разъемы менее надежны, но при этом позволяют быстро отключать/подключать кабели. Контактные площадки более крепкие, но есть риск их перегреть при пайке, и тогда они отслоятся от платы. Наиболее универсальный вариант — сквозные отверстия: можно припаять провода или штыревые разъемы.
BEC (стабилизатор напряжения)
В большинстве полётников уже есть стаб на 5 вольт. В некоторых есть и на 9, и 12 вольт (или на какое-нибудь другое напряжение). Эти стабилизаторы часто называют BEC (battery eliminator circuit).
Несмотря на то, что значительную часть FPV оборудования (камеры, видеопередатчики) можно подключать напрямую к литиевому аккумулятору, я считаю, что изображение будет лучше, если питать их через стабилизатор.
Управление камерой
Кнопка boot (активация загрузчика)
Нажатая кнопка boot при подаче питания переводит процессор полетного контроллера в режим загрузчика (bootloader mode). В этом режиме можно обновить прошивку, даже если стандартные программы этого сделать не могут.
У многих ПК есть два контакта которые нужно закорачивать для этой цели. Но гораздо приятнее, когда стоит кнопка.
Слева кнопка загрузчика, справа — контакты для этой же цели
Демпфирование (софтмаунт, антивибрационное крепление)
Демпфирование позволяет снизить уровень вибраций, передаваемых от моторов к гироскопам. Два основных способа демпфирования полетного контроллера: резиновые стойки и шайбы. Подробнее тут.
Выбор полетного контроллера
История изменений
Выбираем полетный контроллер для квадрокоптера : 26 комментариев
Рама устарела года 2 назад, двигатели тоже устарели, регуляторы слишком слабые (12А); ни камеры, ни видеопередатчика в комплекте я не увидел. В общем, не рекомендую.
Если брать готовое, то ПК на F3, регули мин 20А; либо что-то игрушечное, «на побаловаться», типа MJI Bugs 3
Аппаратура подойдет для начинающего? И устаревшая рама чем мне грозит? Несовпадут отверстия для современных комплектующих?
Аппа какая-то простая от FlySky, я плохо знаю их модельный ряд. Это конечно лучше, чем игрушечные пульты от игрушечных коптеров, но все равно не серьезно.
Рама: старая и тяжелая.
Если только «побаловаться» — тогда можно купить этот комплект; только есть риск разочароваться именно из-за его слабеньких возможностей, сложности апгрейда, необходимости дальше (практически сразу же) вкладываться в апгрейд.
Имхо лучше потратить еще месяц, почитать статьи о сборке коптеров, и здесь, и на многих других сайтах обычно указываются конфигурации; ну и купить указанные комплектующие.
Нифига себе, тебе корона не жмет, ненавижу таких понторезов, гнут пальцы, а сами барыжат по тихому с того же алиэкспреса теми же FlySky, аппаратуру I6 не знают только те кто вобще ни разу коптерами не занимался. Дровина легко превращается в 14 канальную, из недостатков только отсутствие на приемниках RSSI, что решается перепрошивкой. И аппа очень надежная, по дальности на открытом пространстве 1300 метров держит. Так то, автор.
И в 2018 и сейчас (в 2020) не буду советовать брать i6.
P.S. Выдыхай бобер, выдыхай (с) анекдот. Уверен, что с дивана хорошо видно, кто барыжит, а кто делом занят?
Здравствуйте! Подскажите пожалуйста, я никак не могу разобраться и найти подтверждение. У меня Bayangtoys x16 GPS, хочу установить на него 3-х осевой подвес для видеосъёмки. Я так понимаю, что подвес должен быть совместим с контроллером самого коптер? Так вот какой он на баянге не могу найти. Например подвес от DJI zenmuse h3-3d, будет ли он совместим с баянгом?
Или tarot 3d. Что посоветуете. Я сам-то видео оператор, а в fpv сьемке новичок и очень хотелось бы экспертного мнения. И так нужен 3-х осевой? Читал, что лучше поменять ноги родные на фантомные, они якобы шире и в кадр лезть не будут.
Посмотрел на характеристики Bayangtoys x16 GPS, не увидел там контактов для подключения подвеса, но я мельком глядел. В первую очередь читайте rcdesign, например тут http://forum.rcdesign.ru/f135/thread463586.html
Подвес должен откуда-то получать информацию о наклоне/повороте камеры, это не обязательно должен быть полетный контроллер, это может быть отдельный приемник. Т.е. если ваш коптер не позволяет подключить подвес, тогда берете еще одну аппаратуру управления и приемник к ней, с этой аппы и будете управлять подвесом.
Но, ИМХО, это все «полумеры», вы будете больше времени тратить на управление коптером и камерой, чем собственно снимать. Поэтому смотрите на готовые решения типа mavic pro или air.
Добрый день! У меня аппаратура управления spektrum dx7 https://www.spektrumrc.com/Products/Default.aspx?ProdId=SPM2710
Юзаю её уже лет 10 все устраивает особенно дальность. Не могу понять как подключить приёмник к контроллеру Matek F405-STD
(https://banggood.com/Matek-F405-OSD-BetaFlight-STM32F405-Flight-Controller-Built-in-OSD-Inverter-for-RC-Multirotor-FPV-Racing-Drone-p-1141282.html)
Есть ли какой то способ это сделать или только менять аппаратуру что не очень хочется.
Приёмник родной с сотелитом на 7 каналов. Просто я с ним на 2.5км.летаю без потери сигнала. Этим он мне и нравиться. А можете посоветовать приёмник который подойдёт для моей древней spektrum dx7 если конечно есть такие в природе.
Я не спец по спектруму, но судя по всему там только PWM выходы.
Поэтому самый простой вариант — подключать только сателлит, Betaflight их поддерживает.
В прямом. Вы же сами написали, что у вас приемник с сателлитом, вот его и подключайте к полетному контроллеру.
Сателлит без приёмника? Че-то я сомневаюсь что он будет работать без приёмника, но попробую. Спасибо за совет
Что планируется на этом долголете нести? Просто HD камеру или камеру с подвесом? Для подвеса 180 размер маловат.
Регуляторы и мозги по нынешним меркам староваты (для гонок), но если не гнаться за новшествами, то вполне пойдут для долголета. Хотя, я бы подумал, и возможно выбрал бы полетник на F4 или даже на F7, чтобы было побольше последовательных портов для управления периферией: камера, видеопередатчик, приемник, GPS и т.д.
Это полетник AIO, т.е. «все-в-одном», ему плата распределения питания не нужна.