Тяжелый нефтяной остаток что это

Тяжелые нефтяные остатки

Значительная доля всей массы отходов нефтеперегонки приходится на так называемые тяжелые нефтяные остатки.

Увеличение глубины переработки нефти с целью получения дополнительного количества светлых фракций по сравнению с потенциалом достигается введением в схему НПЗ вторичных процессов переработки тяжелых нефтяных фракций (термокрекинг, каталитический крекинг, гидрокрекинг и др.).

Основные направления и особенности переработки тяжелых нефтяных остатков

Современный НПЗ представляет собой сложную химико-технологическую систему, замкнутую по потокам массы и энергии.

Помимо установок первичной переработки нефти (атмосферная, вакуумная, атмосферно-вакуумная ) в состав НПЗ входят установки, реализующие процессы вторичной переработки прямогонных нефтепродуктов.

Среди вторичных процессов выделяют:

К 1 й группе относятся:

2 ю группу составляют:

Тяжелые нефтяные остатки

Процессы коксования

Висбрекинг

Процессы гидрогенизационной переработки ТНО

В настоящее время в мировой практике нефтедобычи все более проявляется тенденция утяжеления добываемой нефти и увеличения содержания в них сернистых соединений при снижении потребности в котельном топливе.

Поскольку выбор технологий переработки нефти и вторичного сырья определяется преимущественно требованиями к качеству нефтепродуктов и законодательными актами по охране окружающей среды, все более важную роль в развитии НПЗ играют процессы гидрогенизационной переработки нефтяных остатков и тяжелых газойлей.

Поставленные перед необходимостью облагораживать нефтяные остатки и тяжелые газойли нефтяные мейджоры переходят от технологии термодеструкции на технологию гидропереработки остатков, в особенности на вновь строящихся НПЗ и в регионах, где затруднен сбыт нефтяного кокса.

Наибольшее распространение в мировой практике нашли следующие процессы гидрореформулирования нефтяных остаточных продуктов:

1. Гидроочистки RCD Unionfining (UOP LLC), RDS/VRDS/OCR (Chevron Lummus Global LLC), Hyvahl (Axens). Процессы предназначены для уменьшения содержания серы, азота, асфальтенов, соединений металлов и снижения коксуемости остаточного сырья с целью получения качественного котельного топлива или для дальнейшей переработки на гидрокрекинге, коксовании, каталитическом крекинге.

2. Гидровисбрекинг-акваконверсия (Intevep SA и UOP) Технология позволяет получать водород из воды в условиях висбрекинга за счет ввода в сырье вместе с водой (паром) композиции из 2 х катализаторов на основе неблагородных металлов. В процессе акваконверсии обеспечивается значительно большее снижение вязкости наиболее тяжелых компонентов котельных топлив при более высокой конверсии сырья.

3. Гидрокрекинги (НС)3 (Hydrocarbon Technologies), LC-Fining (Chevron Lummus Global LLC), H-Oil (IFP). Предназначены для каталитического гидрокрекинга и обессеривания остаточного сырья в реакторах со взвешенным катализатором с получением высококачественных дистиллятов и облагороженного малосернистого котельного топлива. Несмотря на очевидные достоинства гидрогенизационной переработки нефтяных остатков, широкое ее внедрение сдерживается сложностью и громоздкостью реакторных устройств, а также сложностью управления технологическим процессом, так как это не способствует его надежности. Кроме того, чрезвычайно велико потребление молекулярного водорода, что обусловливает необходимость параллельного ввода в эксплуатацию дополнительных мощностей по его производству. Это негативно сказывается на экономике процессов и ставит проблему утилизации оксидов углерода.

Газификация нефтяных остатков

Самые тяжелые остаточные углеводородные фракции с высоким содержанием серы и металлов могут быть превращены в чистый синтез-газ и ценные оксиды металлов. Образующиеся при этом соединения серы могут быть легко выделены обычными способами и превращены в элементарную серу или серную кислоту.

В последнее время газификацию используют также для восполнения дефицита водорода в других процессах нефтепереработки. Кроме того, возможно применение газификации для утилизации остатков деасфальтизации, висбрекинга и тп

Проводя анализ существующих способов утилизации остаточных нефтепродуктов, нельзя не упомянуть разработки по использованию гудронов, асфальтитов в качестве связующих, пластификаторов, сырья для получения углеродных адсорбентов, ионитов и каталитических систем на их основе.

Экономически более выгодной на сегодняшний день считается переработка тяжелых нефтяных остатков с максимальным возвратом получаемых продуктов в производство моторных топлив и масел.

В настоящее время в мировой нефтепереработке нет недостатка в технических решениях по переработке тяжелых высокосернистых нефтяных остатков, однако большинство из этих решений требует значительных капитальных вложений.

Поэтому усилия многих исследователей сегодня направлены на поиск методов, позволяющих повысить эффективность процессов, уже находящихся в широкой эксплуатации, таких как коксование и висбрекинг.

Для интенсификации процессов термодеструкции нефтяное сырье подвергают активации, используя арсенал физических и химических методов.

Так, использование различных химических добавок позволяет учитывать особенности сырья с точки зрения межмолекулярных взаимодействий и тем самым влиять на скорость и направленность химических превращений в системе.

Наряду с развитием гидрогенизационных способов переработки тяжелых нефтяных остатков в современной нефтепереработке сохраняют актуальность и термодеструктивные процессы: термокрекинг, висбрекинг, коксование.

Использование в таких процессах добавок химических соединений, выполняющих функции окислителей/восстановителей, инициаторов/ингибиторов свободно-радикальных процессов, компенсаторов парамагнитных центров, регуляторов фазовых переходов в дисперсной системе и тп, позволяет оказывать существенное влияние на режим и результаты термодеструктивной переработки нефтяного сырья, приводя к увеличению выхода светлых дистиллятов и вакуумных газойлей и снижению коксообразования.

При этом для внедрения удачных промотирующих композиций в промышленность не требуется существенного изменения технологической схемы и конструкции оборудования. Поэтому исследования, направленные на разработку эффективных способов химической активации процессов переработки тяжелых нефтяных остатков, являются весьма перспективными.

Источник

Разница между тяжелыми и легкими дистиллятами нефти

Тяжелые и легкие фракции перегонки нефти — это многокомпонентная непрерывная смесь гетероатомных соединений и углеводородов. Другое название — дистилляты. Они образуются при разделении нефти на компоненты с менее сложным составом. Данный процесс называют фракционированием — он позволяет получить сырье для производства широкого спектра других нефтепродуктов.

Тяжелый нефтяной остаток что это. Смотреть фото Тяжелый нефтяной остаток что это. Смотреть картинку Тяжелый нефтяной остаток что это. Картинка про Тяжелый нефтяной остаток что это. Фото Тяжелый нефтяной остаток что это

Что такое дистиллят нефти

Дистилляты нефти представляют собой результат многостадийного разделения на фракции, которые имеют разные интервалы выкипания. Разделение может происходить простым и более старым способом — методом дистилляции, или с помощью более современной технологии — ректификации.

Любой дистиллят перегонки нефти не является товарным продуктом. Для поставки потребителю фракции подвергают дальнейшей переработке, например, очистке. Все дистилляты делятся на 3 группы:

Состав фракций определяется месторождения, на котором добывалось сырье. В нефти могут присутствовать алифатические, ароматические, ациклические углеводороды. В большинстве случаев в составе наблюдаются их комбинации. В зависимости от сырья могут получаться ароматические, ациклические или алифатические дистилляты нефти.

Процесс разделения нефти на фракции

Сам процесс перегонки происходит в ректификационных колоннах. Сырье, подлежащее дистилляции, нагревается до определенной температуры. В результате начинается испарение, а образовавшийся газ поступает в трубопровод, где охлаждается и конденсируется на стенках. Капли собираются и образуют дистиллят.

Тяжелый нефтяной остаток что это. Смотреть фото Тяжелый нефтяной остаток что это. Смотреть картинку Тяжелый нефтяной остаток что это. Картинка про Тяжелый нефтяной остаток что это. Фото Тяжелый нефтяной остаток что это
Как происходит перегонка нефти

На каждой стадии процесса разделения нефти на фракции получаются 2 продукта:

Типы дистиллятов прямой перегонки нефти зависят от того, каким способом происходит переработка сырья. Наиболее распространены топливный и топливно-масляный варианты. В первом случае выделяются следующие фракции с определенной температурой выкипания:

При топливно-масляном варианте перегонки получают топливные дистилляты и мазут. Последний отправляют на вакуумную перегонку, которая дает масляный дистиллят и тяжелый остаток гудрон. Чтобы увеличить выход масляного дистиллята, гудрон дополнительно смешивают с мазутом и тоже подвергают вакуумной перегонке.

Масляную фракцию очищают и используют для производства смазок и товарных масел. Остаточным продуктом при вакуумной перегонке выступает сырье для производства битума, который активно применяется в строительной сфере.

Тяжелые дистилляты

Тяжелые фракции нефти еще называются темными нефтепродуктами. В их составе содержится много механических примесей, смол, аморфных и окрашивающих компонентов, чем обусловлен темный, часто почти черный цвет.

Какие фракции нефти относятся к тяжелым:

Мазут получают путем выделения из нефти газойлевых, керосиновых и бензиновых фракций. Нефтепродукт выступает остатком после их выкипания, образуется при температуре 350-360 °C.

Тяжелый нефтяной остаток что это. Смотреть фото Тяжелый нефтяной остаток что это. Смотреть картинку Тяжелый нефтяной остаток что это. Картинка про Тяжелый нефтяной остаток что это. Фото Тяжелый нефтяной остаток что это
Как выглядит мазут

В составе мазута содержится много примесей: смол, органических соединений с микроэлементами, включая металл и неметаллы (V, Ni, Fe, Mg, Na, Ca, Ti, Hg, Zn и др.). Из углеводородов преобладают асфальтены, карбены и карбоиды. Ввиду высокой вязкости мазут применяется как жидкое топливо. В соответствии с ГОСТом нефтепродукт делится на флотский и топочный. Первый является неотъемлемой частью работы судоходного транспорта. Топочный широко применяется на ТЭЦ.

Мазут служит сырьем для выделения масляных фракций. Для этого нефтепродукт подвергают вакуумной перегонке, поскольку тяжелые фракции невозможно перегнать при атмосферном давлении. В результате получают не только технические масла, но и парафины, церезины и тяжелый остаток – гудрон.

Самой тяжелой фракцией нефти является гурон. Он получается после завершения процесса перегонки и выделения всех фракций. Температура выкипания достигает 500 °C (в зависимости от природы нефти могут быть значения от 450 до 600 °C). Около 95% гудрона составляют парафин и нафтен, 3% — асфальтен, 2% — смолы. Также в составе содержатся почти все присутствующие в нефти металлы. Этим объясняются очень вязкая консистенция и черный цвет. Плотность нефтепродукта достигает 950-1030 кг/м3.

Тяжелый нефтяной остаток что это. Смотреть фото Тяжелый нефтяной остаток что это. Смотреть картинку Тяжелый нефтяной остаток что это. Картинка про Тяжелый нефтяной остаток что это. Фото Тяжелый нефтяной остаток что это
Гудрон имеет блескую поверхность

Основная сфера применения гудрона — дорожное строительство. Нефтепродукт служит сырьем для производства битума, из которого изготавливают кровельные материалы, включая мягкую черепицу, рубероид, линокром и пр. Кроме кровельных, выпускаются строительный и дорожный битумы. Не меньшее распространение гудрон получил в производстве кокса.

Легкие дистилляты

Легкие дистилляты нефти — это фракции, которые обладают высокой степенью очистки, что обеспечивает им повышенное качество. Иначе еще называются светлыми нефтепродуктами. Все потому, что ввиду высокого качества очистки имеют оптические свойства, близкие к прозрачным.

Легкие фракции нефти в сравнении с тяжелыми:

К легким фракциям перегонки нефти относятся:

Средние дистилляты нефти:

Самая легкая фракция нефти — это петролейный эфир, получаемый из попутных нефтяных газов и газоконденсата. Именно он выделяется одним из первых. Продукт представляет собой бесцветную жидкость, состоящую преимущественно из n-пентана и n-гексана, без бензола и других истинных эфиров в составе.

Фракция выкипает при температуре до 100 °C: легкая — при 40-70 °C, тяжелая — при 70-100 °C. плотность достигает 650-695 кг/м3. Особенность петролейного эфира заключается в том, что он сразу испаряется при невысокой температуре. Нефтепродукт используют как растворитель при экстракции углеводородов, нефти, битумиоидов из горных пород, а также как топливо для каталитических горелок и зажигалок. Эфир помогает растворять жиры, масла, смолы и другие углеводородные соединения.

Тяжелый нефтяной остаток что это. Смотреть фото Тяжелый нефтяной остаток что это. Смотреть картинку Тяжелый нефтяной остаток что это. Картинка про Тяжелый нефтяной остаток что это. Фото Тяжелый нефтяной остаток что это
Петролейный эфир имеет очень светлый оттенок

Фракция бензина выкипает при температуре от 40 до 225 °C. В составе преобладают алифатические углеводороды C5–C12, в том числе разветвленные и неразветвленные алканы. Для фракции характерно высокое содержание ароматических углеводородов — толуола и метаксилола.

Основное назначение бензиновой фракции — производство топлива для двигателей внутреннего сгорания. Дополнительно фракция используется в качестве сырья в нефтехимической промышленности.

Свойства получаемого топлива определяются особенностями нефти, из которой был извлечен дистиллят. Причем далеко не все нефти подходят для изготовления бензина высокого качества. К примеру, в бензиновых фракциях нефтей Ставропольского края слишком много парафиновых углеводородов. Из-за этого изготавливаемый бензин имеет невысокие октановые числа.

При температуре 120-240 °C выкипает лигроиновая фракция, содержащая смеси алифатических углеводородов C8–C14, т. е. более тяжелых, чем в петролейной и бензиновой. Другие названия: нафта, тяжелый бензин, бензинлигроиновая фракция, дистиллят газового конденсата, дизельное топливо ДГК.

В лигроиновой фракции гораздо больше ароматических углеводородов, чем в бензиновой. Их количество достигает 8%. Другая особенность — повышенное содержание нафтенов, которых в 3 раза больше, чем парафинов. Средняя плотность фракции достигает 780-790 кг/м3.

Лигроин получают из стабильного газового конденсата, или так называемой «белой нефти». Нефтепродукт позиционируется как аналог дизеля, широко используется в качестве моторного топлива. Как горючее лигроин обладает высоким тепловыделением при воспламенении. Как высокооктановый нефтепродукт лигроиновая фракция применяется для производства товарных бензинов.

Сферы применения лигроиновой фракции:

Пределы выкипания керосиновой фракции — от 120 до 315 °C. Она делится на легкую (до 200 °C) и тяжелую (боле 300 °C). Основу составляют углеводороды от C9 до C16: наряду с парафинами, моноциклическими нафтенами и бензолом в составе содержатся бициклические углеводороды (нафтеновые, ароматические, нафтено-ароматические). Плотность при 20 °C составляет 854 кг/м3, температура начала кристаллизации равна –60 °C.

Керосиновая фракция — это дефицитный нефтепродукт, который используют во многих сферах. Она отвечает строгим требованиям на современные и перспективные реактивные топлива с повышенной плотностью, хорошей термической стабильностью и низкотемпературными свойствами. Все по той причине, что в составе керосина много изопарафинов и мало бициклических ароматических углеводородов. За счет этого дистиллят выступает высококачественным реактивным топливом, которое применяют в газотурбинных и воздушно-реактивных двигателях.

Тяжелый нефтяной остаток что это. Смотреть фото Тяжелый нефтяной остаток что это. Смотреть картинку Тяжелый нефтяной остаток что это. Картинка про Тяжелый нефтяной остаток что это. Фото Тяжелый нефтяной остаток что это
Реактивное топливо представляет собой смесь горючего (керосина) и окислителя

Дополнительно фракция идет на производство лакокрасочной продукции, применяется как растворитель для краски. Другие возможности использования зависят от температуры выкипания:

Основным сырьем для производства дизтоплива, используемого в быстроходных видах транспорта, выступает дизельная фракция. Она менее летучая и более вязкая, чем керосиновая. Содержит сложные смеси C9 и более высоких углеводородов, преимущественно нафтенов с высоким цетановым числом и низкой температурой застывания. Пределы выкипания — от 180 до 360 °C.

Для производства низкотемпературных марок дизтоплива фракцию подвергают депарафинизации с применением карбамида. В результате получается зимнее топливо с температурой застывания –45 °C и арктическое, застывающее только при –60 °C.

Кроме производства дизтоплива, фракция используется во вторичной переработке. Она позволяет получить керосин, применяемый в лакокрасочной промышленности и приборостроении, изготовлении химии для автотранспорта.

В заключение

Таким образом, продуктами прямой перегонки нефти являются дистилляты — легкие, средние и тяжелые. Они различаются температурой выкипания, составом, свойствами и сферой применения. Тяжелые и легкие фракции перегонки нефти выступают сырьем для дальнейшей переработки, которая позволяет получить товарный продукт, предназначенный для поставки потребителю.

Источник

Тяжелые нефтяные остатки

Значительная доля всей массы отходов нефтеперегонки приходится на так называемые тяжелые нефтяные остатки.

Увеличение глубины переработки нефти с целью получения дополнительного количества светлых фракций по сравнению с потенциалом достигается введением в схему НПЗ вторичных процессов переработки тяжелых нефтяных фракций (термокрекинг, каталитический крекинг, гидрокрекинг и др.).

Основные направления и особенности переработки тяжелых нефтяных остатков

Современный НПЗ представляет собой сложную химико-технологическую систему, замкнутую по потокам массы и энергии.

Помимо установок первичной переработки нефти (атмосферная, вакуумная, атмосферно-вакуумная ) в состав НПЗ входят установки, реализующие процессы вторичной переработки прямогонных нефтепродуктов.

Среди вторичных процессов выделяют:

К 1 й группе относятся:

2 ю группу составляют:

Тяжелые нефтяные остатки

Процессы коксования

Висбрекинг

Процессы гидрогенизационной переработки ТНО

В настоящее время в мировой практике нефтедобычи все более проявляется тенденция утяжеления добываемой нефти и увеличения содержания в них сернистых соединений при снижении потребности в котельном топливе.

Поскольку выбор технологий переработки нефти и вторичного сырья определяется преимущественно требованиями к качеству нефтепродуктов и законодательными актами по охране окружающей среды, все более важную роль в развитии НПЗ играют процессы гидрогенизационной переработки нефтяных остатков и тяжелых газойлей.

Поставленные перед необходимостью облагораживать нефтяные остатки и тяжелые газойли нефтяные мейджоры переходят от технологии термодеструкции на технологию гидропереработки остатков, в особенности на вновь строящихся НПЗ и в регионах, где затруднен сбыт нефтяного кокса.

Наибольшее распространение в мировой практике нашли следующие процессы гидрореформулирования нефтяных остаточных продуктов:

1. Гидроочистки RCD Unionfining (UOP LLC), RDS/VRDS/OCR (Chevron Lummus Global LLC), Hyvahl (Axens). Процессы предназначены для уменьшения содержания серы, азота, асфальтенов, соединений металлов и снижения коксуемости остаточного сырья с целью получения качественного котельного топлива или для дальнейшей переработки на гидрокрекинге, коксовании, каталитическом крекинге.

2. Гидровисбрекинг-акваконверсия (Intevep SA и UOP) Технология позволяет получать водород из воды в условиях висбрекинга за счет ввода в сырье вместе с водой (паром) композиции из 2 х катализаторов на основе неблагородных металлов. В процессе акваконверсии обеспечивается значительно большее снижение вязкости наиболее тяжелых компонентов котельных топлив при более высокой конверсии сырья.

3. Гидрокрекинги (НС)3 (Hydrocarbon Technologies), LC-Fining (Chevron Lummus Global LLC), H-Oil (IFP). Предназначены для каталитического гидрокрекинга и обессеривания остаточного сырья в реакторах со взвешенным катализатором с получением высококачественных дистиллятов и облагороженного малосернистого котельного топлива. Несмотря на очевидные достоинства гидрогенизационной переработки нефтяных остатков, широкое ее внедрение сдерживается сложностью и громоздкостью реакторных устройств, а также сложностью управления технологическим процессом, так как это не способствует его надежности. Кроме того, чрезвычайно велико потребление молекулярного водорода, что обусловливает необходимость параллельного ввода в эксплуатацию дополнительных мощностей по его производству. Это негативно сказывается на экономике процессов и ставит проблему утилизации оксидов углерода.

Газификация нефтяных остатков

Самые тяжелые остаточные углеводородные фракции с высоким содержанием серы и металлов могут быть превращены в чистый синтез-газ и ценные оксиды металлов. Образующиеся при этом соединения серы могут быть легко выделены обычными способами и превращены в элементарную серу или серную кислоту.

В последнее время газификацию используют также для восполнения дефицита водорода в других процессах нефтепереработки. Кроме того, возможно применение газификации для утилизации остатков деасфальтизации, висбрекинга и тп

Проводя анализ существующих способов утилизации остаточных нефтепродуктов, нельзя не упомянуть разработки по использованию гудронов, асфальтитов в качестве связующих, пластификаторов, сырья для получения углеродных адсорбентов, ионитов и каталитических систем на их основе.

Экономически более выгодной на сегодняшний день считается переработка тяжелых нефтяных остатков с максимальным возвратом получаемых продуктов в производство моторных топлив и масел.

В настоящее время в мировой нефтепереработке нет недостатка в технических решениях по переработке тяжелых высокосернистых нефтяных остатков, однако большинство из этих решений требует значительных капитальных вложений.

Поэтому усилия многих исследователей сегодня направлены на поиск методов, позволяющих повысить эффективность процессов, уже находящихся в широкой эксплуатации, таких как коксование и висбрекинг.

Для интенсификации процессов термодеструкции нефтяное сырье подвергают активации, используя арсенал физических и химических методов.

Так, использование различных химических добавок позволяет учитывать особенности сырья с точки зрения межмолекулярных взаимодействий и тем самым влиять на скорость и направленность химических превращений в системе.

Наряду с развитием гидрогенизационных способов переработки тяжелых нефтяных остатков в современной нефтепереработке сохраняют актуальность и термодеструктивные процессы: термокрекинг, висбрекинг, коксование.

Использование в таких процессах добавок химических соединений, выполняющих функции окислителей/восстановителей, инициаторов/ингибиторов свободно-радикальных процессов, компенсаторов парамагнитных центров, регуляторов фазовых переходов в дисперсной системе и тп, позволяет оказывать существенное влияние на режим и результаты термодеструктивной переработки нефтяного сырья, приводя к увеличению выхода светлых дистиллятов и вакуумных газойлей и снижению коксообразования.

При этом для внедрения удачных промотирующих композиций в промышленность не требуется существенного изменения технологической схемы и конструкции оборудования. Поэтому исследования, направленные на разработку эффективных способов химической активации процессов переработки тяжелых нефтяных остатков, являются весьма перспективными.

Источник

Тяжелые нефтяные остатки

Значительная доля всей массы отходов нефтеперегонки приходится на так называемые тяжелые нефтяные остатки.

Увеличение глубины переработки нефти с целью получения дополнительного количества светлых фракций по сравнению с потенциалом достигается введением в схему НПЗ вторичных процессов переработки тяжелых нефтяных фракций (термокрекинг, каталитический крекинг, гидрокрекинг и др.).

Основные направления и особенности переработки тяжелых нефтяных остатков

Современный НПЗ представляет собой сложную химико-технологическую систему, замкнутую по потокам массы и энергии.

Помимо установок первичной переработки нефти (атмосферная, вакуумная, атмосферно-вакуумная ) в состав НПЗ входят установки, реализующие процессы вторичной переработки прямогонных нефтепродуктов.

Среди вторичных процессов выделяют:

К 1 й группе относятся:

2 ю группу составляют:

Тяжелые нефтяные остатки

Процессы коксования

Висбрекинг

Процессы гидрогенизационной переработки ТНО

В настоящее время в мировой практике нефтедобычи все более проявляется тенденция утяжеления добываемой нефти и увеличения содержания в них сернистых соединений при снижении потребности в котельном топливе.

Поскольку выбор технологий переработки нефти и вторичного сырья определяется преимущественно требованиями к качеству нефтепродуктов и законодательными актами по охране окружающей среды, все более важную роль в развитии НПЗ играют процессы гидрогенизационной переработки нефтяных остатков и тяжелых газойлей.

Поставленные перед необходимостью облагораживать нефтяные остатки и тяжелые газойли нефтяные мейджоры переходят от технологии термодеструкции на технологию гидропереработки остатков, в особенности на вновь строящихся НПЗ и в регионах, где затруднен сбыт нефтяного кокса.

Наибольшее распространение в мировой практике нашли следующие процессы гидрореформулирования нефтяных остаточных продуктов:

1. Гидроочистки RCD Unionfining (UOP LLC), RDS/VRDS/OCR (Chevron Lummus Global LLC), Hyvahl (Axens). Процессы предназначены для уменьшения содержания серы, азота, асфальтенов, соединений металлов и снижения коксуемости остаточного сырья с целью получения качественного котельного топлива или для дальнейшей переработки на гидрокрекинге, коксовании, каталитическом крекинге.

2. Гидровисбрекинг-акваконверсия (Intevep SA и UOP) Технология позволяет получать водород из воды в условиях висбрекинга за счет ввода в сырье вместе с водой (паром) композиции из 2 х катализаторов на основе неблагородных металлов. В процессе акваконверсии обеспечивается значительно большее снижение вязкости наиболее тяжелых компонентов котельных топлив при более высокой конверсии сырья.

3. Гидрокрекинги (НС)3 (Hydrocarbon Technologies), LC-Fining (Chevron Lummus Global LLC), H-Oil (IFP). Предназначены для каталитического гидрокрекинга и обессеривания остаточного сырья в реакторах со взвешенным катализатором с получением высококачественных дистиллятов и облагороженного малосернистого котельного топлива. Несмотря на очевидные достоинства гидрогенизационной переработки нефтяных остатков, широкое ее внедрение сдерживается сложностью и громоздкостью реакторных устройств, а также сложностью управления технологическим процессом, так как это не способствует его надежности. Кроме того, чрезвычайно велико потребление молекулярного водорода, что обусловливает необходимость параллельного ввода в эксплуатацию дополнительных мощностей по его производству. Это негативно сказывается на экономике процессов и ставит проблему утилизации оксидов углерода.

Газификация нефтяных остатков

Самые тяжелые остаточные углеводородные фракции с высоким содержанием серы и металлов могут быть превращены в чистый синтез-газ и ценные оксиды металлов. Образующиеся при этом соединения серы могут быть легко выделены обычными способами и превращены в элементарную серу или серную кислоту.

В последнее время газификацию используют также для восполнения дефицита водорода в других процессах нефтепереработки. Кроме того, возможно применение газификации для утилизации остатков деасфальтизации, висбрекинга и тп

Проводя анализ существующих способов утилизации остаточных нефтепродуктов, нельзя не упомянуть разработки по использованию гудронов, асфальтитов в качестве связующих, пластификаторов, сырья для получения углеродных адсорбентов, ионитов и каталитических систем на их основе.

Экономически более выгодной на сегодняшний день считается переработка тяжелых нефтяных остатков с максимальным возвратом получаемых продуктов в производство моторных топлив и масел.

В настоящее время в мировой нефтепереработке нет недостатка в технических решениях по переработке тяжелых высокосернистых нефтяных остатков, однако большинство из этих решений требует значительных капитальных вложений.

Поэтому усилия многих исследователей сегодня направлены на поиск методов, позволяющих повысить эффективность процессов, уже находящихся в широкой эксплуатации, таких как коксование и висбрекинг.

Для интенсификации процессов термодеструкции нефтяное сырье подвергают активации, используя арсенал физических и химических методов.

Так, использование различных химических добавок позволяет учитывать особенности сырья с точки зрения межмолекулярных взаимодействий и тем самым влиять на скорость и направленность химических превращений в системе.

Наряду с развитием гидрогенизационных способов переработки тяжелых нефтяных остатков в современной нефтепереработке сохраняют актуальность и термодеструктивные процессы: термокрекинг, висбрекинг, коксование.

Использование в таких процессах добавок химических соединений, выполняющих функции окислителей/восстановителей, инициаторов/ингибиторов свободно-радикальных процессов, компенсаторов парамагнитных центров, регуляторов фазовых переходов в дисперсной системе и тп, позволяет оказывать существенное влияние на режим и результаты термодеструктивной переработки нефтяного сырья, приводя к увеличению выхода светлых дистиллятов и вакуумных газойлей и снижению коксообразования.

При этом для внедрения удачных промотирующих композиций в промышленность не требуется существенного изменения технологической схемы и конструкции оборудования. Поэтому исследования, направленные на разработку эффективных способов химической активации процессов переработки тяжелых нефтяных остатков, являются весьма перспективными.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *